Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Bioenerg ; 1858(8): 556-572, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28167100

RESUMO

Altered metabolism in cancer cells is pivotal for tumor growth, most notably by providing energy, reducing equivalents and building blocks while several metabolites exert a signaling function promoting tumor growth and progression. A cancer tissue cannot be simply reduced to a bulk of proliferating cells. Tumors are indeed complex and dynamic structures where single cells can heterogeneously perform various biological activities with different metabolic requirements. Because tumors are composed of different types of cells with metabolic activities affected by different spatial and temporal contexts, it is important to address metabolism taking into account cellular and biological heterogeneity. In this review, we describe this heterogeneity also in metabolic fluxes, thus showing the relative contribution of different metabolic activities to tumor progression according to the cellular context. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.


Assuntos
Metabolismo Energético , Neoplasias/metabolismo , Animais , Morte Celular , Divisão Celular , Glicólise , Humanos , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células Estromais/metabolismo
2.
Trends Biochem Sci ; 35(7): 361-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20363631

RESUMO

The nucleolus has emerged as a key player that regulates cell growth, survival and the recovery from stress. Progress in proteomics made it possible to sequence the nucleolar proteome under different physiological conditions. Together with other research, this work revealed the presence of multiple chaperones and co-chaperones in the nucleolus. Molecular chaperones are components of a larger network that promotes protein homeostasis, thereby providing continuous adaptation to a changing environment. Recent studies suggest that the cellular chaperone network is divided into individual branches which orchestrate specific functions. Input from separate branches is then combined to 'fine-tune' the cellular proteostasis network. Based on the latest developments in nucleolar and chaperone biology, we speculate that a unique network comprising chaperones, co-chaperones and multitasking proteins is located in nucleoli. This network supports and regulates fundamental biological processes, including ribosome biogenesis, cell signaling, and the stress response.


Assuntos
Nucléolo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas/metabolismo , Sobrevivência Celular , Proteoma , Ribossomos/metabolismo , Transdução de Sinais , Estresse Fisiológico
3.
J Biol Chem ; 285(28): 21858-67, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20457599

RESUMO

Hsc70s are constitutively synthesized members of the 70-kDa chaperone family; they are essential for viability and conserved among all organisms. When eukaryotic cells recover from stress, hsc70s accumulate in nucleoli by an unknown mechanism. Our studies were undertaken to characterize the signaling events and the targeting sequence required to concentrate hsc70 in the nucleoli of human cells. Here, we show that pharmacological inhibitors of phosphatidylinositol (PI) 3-kinase and MEK kinases as well as protein-tyrosine phosphatases abolished the stress-dependent nucleolar accumulation of hsc70. Furthermore, to identify the hsc70 nucleolar targeting sequence, green fluorescent protein-tagged fusion proteins with defined segments of hsc70 were generated and their subcellular distribution was analyzed in growing cells. These studies demonstrated that residues 225 to 297 serve as a heat-inducible nucleolar targeting signal. This segment directs green fluorescent protein to nucleoli in response to stress, but fails to do so under nonstress conditions. Fine mapping of the nucleolar targeting signal revealed that it has two separable functions. First, residues 225 to 262 direct reporter proteins constitutively to nucleoli, even without stress. Second, segment 263 to 287 functions as an autoinhibitory element that prevents hsc70 from concentrating in nucleoli when cells are not stressed. Taken together, PI 3-kinase and MEK kinase signaling as well as tyrosine dephosphorylation are essential for the accumulation of hsc70 in nucleoli of stressed cells. This process relies on a stress-dependent composite targeting signal that combines multiple functions.


Assuntos
Nucléolo Celular/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Chaperonas Moleculares/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Sobrevivência Celular , Chaperoninas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , MAP Quinase Quinase Quinase 1/metabolismo , Modelos Biológicos , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Espectrometria de Fluorescência/métodos
4.
BMC Cell Biol ; 12: 25, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21639891

RESUMO

BACKGROUND: Nucleoli are composed of possibly several thousand different proteins and represent the most conspicuous compartments in the nucleus; they play a crucial role in the proper execution of many cellular processes. As such, nucleoli carry out ribosome biogenesis and sequester or associate with key molecules that regulate cell cycle progression, tumorigenesis, apoptosis and the stress response. Nucleoli are dynamic compartments that are characterized by a constant flux of macromolecules. Given the complex and dynamic composition of the nucleolar proteome, it is challenging to link modifications in nucleolar composition to downstream effects. RESULTS: In this contribution, we present quantitative immunofluorescence methods that rely on computer-based image analysis. We demonstrate the effectiveness of these techniques by monitoring the dynamic association of proteins and RNA with nucleoli under different physiological conditions. Thus, the protocols described by us were employed to study stress-dependent changes in the nucleolar concentration of endogenous and GFP-tagged proteins. Furthermore, our methods were applied to measure de novo RNA synthesis that is associated with nucleoli. We show that the techniques described here can be easily combined with automated high throughput screening (HTS) platforms, making it possible to obtain large data sets and analyze many of the biological processes that are located in nucleoli. CONCLUSIONS: Our protocols set the stage to analyze in a quantitative fashion the kinetics of shuttling nucleolar proteins, both at the single cell level as well as for a large number of cells. Moreover, the procedures described here are compatible with high throughput image acquisition and analysis using HTS automated platforms, thereby providing the basis to quantify nucleolar components and activities for numerous samples and experimental conditions. Together with the growing amount of information obtained for the nucleolar proteome, improvements in quantitative microscopy as they are described here can be expected to produce new insights into the complex biological functions that are orchestrated by the nucleolus.


Assuntos
Nucléolo Celular/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Proteínas Nucleares/análise , Proteínas Cromossômicas não Histona/análise , Proteínas Cromossômicas não Histona/genética , Processamento Eletrônico de Dados , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/genética , Nucleofosmina , RNA/metabolismo
5.
Cancer Cell ; 30(3): 418-431, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27622334

RESUMO

Metabolic adaptability is essential for tumor progression and includes cooperation between cancer cells with different metabolic phenotypes. Optimal glucose supply to glycolytic cancer cells occurs when oxidative cancer cells use lactate preferentially to glucose. However, using lactate instead of glucose mimics glucose deprivation, and glucose starvation induces autophagy. We report that lactate sustains autophagy in cancer. In cancer cells preferentially to normal cells, lactate dehydrogenase B (LDHB), catalyzing the conversion of lactate and NAD(+) to pyruvate, NADH and H(+), controls lysosomal acidification, vesicle maturation, and intracellular proteolysis. LDHB activity is necessary for basal autophagy and cancer cell proliferation not only in oxidative cancer cells but also in glycolytic cancer cells.


Assuntos
L-Lactato Desidrogenase/metabolismo , Lisossomos/enzimologia , Neoplasias/enzimologia , Neoplasias/patologia , Animais , Autofagia/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/genética , Camundongos
6.
FEBS Lett ; 583(12): 1987-93, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19446553

RESUMO

ERK and Akt kinases are key components that participate in numerous regulatory processes, including the response to stress. Using novel tools for quantitative immunofluorescence, we show that oxidant exposure controls the intracellular activation and localization of ERK1/2 and Akt. Oxidative stress alters the nuclear/cytoplasmic levels of the kinases, drastically changing phospho-ERK1/2 and phospho-Akt(Ser473) levels in the nucleus. Moreover, pharmacological inhibition of PI3 kinase modulates the intracellular distribution of phospho-ERK1/2, whereas MEK inhibition affects phospho-Akt(Thr308) and phospho-Akt(Ser473). Our studies identify a new signaling link in the nucleus of stressed cells, where changes in phospho-ERK1/2 levels correlate directly with changes in phospho-Akt(Ser473).


Assuntos
Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Morfolinas/farmacologia , Estresse Oxidativo , Inibidores de Fosfoinositídeo-3 Quinase , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia
7.
Exp Cell Res ; 312(13): 2490-9, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16730000

RESUMO

Nuclear pore complexes (NPCs) provide the only sites for macromolecular transport between nucleus and cytoplasm. The nucleoporin p62, a component of higher eukaryotic NPCs, is located at the central gated channel and involved in nuclear trafficking of various cargos. p62 is organized into an N-terminal segment that contains FXFG repeats and binds the soluble transport factor NTF2, whereas the C-terminal portion associates with other nucleoporins and importin-beta1. We have now identified new components that interact specifically with the p62 N-terminal domain. Using the p62 N-terminal segment as bait, we affinity-purified nucleoporins Nup358, Nup214 and Nup153 from crude cell extracts. In ligand binding assays, the N-terminal p62 segment associated with Nup358 and p62, suggesting their direct binding to the p62 N-terminal portion. Furthermore, p62 was isolated in complex with Nup358, Nup214 and Nup153 from growing HeLa cells, indicating that the interactions Nup358/p62, Nup214/p62 and p62/Nup153 also occur in vivo. The formation of Nup358/p62 and p62/Nup153 complexes was restricted to interphase cells, whereas Nup214/p62 binding was detected in interphase as well as during mitosis. Our results support a model of complex interactions between FXFG containing nucleoporins, and we propose that some of these interactions may contribute to the movement of cargo across the NPC.


Assuntos
Interfase , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/classificação , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Acetilglucosamina/metabolismo , Células HeLa , Humanos , Ligantes , Mitose , Modelos Biológicos , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa