Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 236(2): 727-37, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22526501

RESUMO

Ozone induces a stimulation of the phenylpropanoid and lignin biosynthesis pathways in leaves but the response of wood, the main lignin-producing tissue, is not well documented. The purpose of this study was to compare the responses of phenylpropanoid and lignin pathways in leaves and stem wood by a simultaneous analysis of both organs. Young poplars (Populus tremula×alba) were subjected either to daylight ozone (200 nL L(-1) during light period) or continuous ozone (200 nL L(-1) during light and dark periods) in controlled chambers. The trees were tilted so as to limit the formation of tension wood to the upper side of the stem and that of opposite wood to the lower side. Continuous ozone fumigation induced more pronounced effects in leaves than daylight ozone. Tension wood and opposite wood displayed similar responses to ozone. Enzyme activities involved in phenylpropanoid and lignin biosynthesis increased in the leaves of ozone-treated poplars and decreased in the wood. All steps involved in phenylpropanoid and monolignol synthesis in leaves and stem wood, were also altered at the transcript level (except coniferyl aldehyde 5-hydroxylase in leaves) suggesting that the responses were tightly coordinated. The response occurred rapidly in the leaves and much later in the wood. Phenylpropanoid and lignin biosynthesis is probably first involved in a defensive role against ozone in the leaves, which would lead to considerable rerouting of the carbon skeletons. The later response of phenylpropanoid and lignin metabolism in wood seemed to result from readjustment to the reduced carbon supply.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Ozônio/farmacologia , Folhas de Planta/fisiologia , Populus/fisiologia , Propanóis/metabolismo , Madeira/fisiologia , Biomassa , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Lignina/análise , Lignina/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação , Populus/efeitos dos fármacos , Populus/crescimento & desenvolvimento , Populus/efeitos da radiação , Propanóis/análise , RNA de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Madeira/efeitos dos fármacos , Madeira/crescimento & desenvolvimento , Madeira/efeitos da radiação
2.
J Exp Bot ; 63(11): 4291-301, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22553285

RESUMO

Trees will have to cope with increasing levels of CO(2) and ozone in the atmosphere. The purpose of this work was to assess whether the lignification process could be altered in the wood of poplars under elevated CO(2) and/or ozone. Young poplars were exposed either to charcoal-filtered air (control), to elevated CO(2) (800 µl l(-1)), to ozone (200 nl l(-1)) or to a combination of elevated CO(2) and ozone in controlled chambers. Lignification was analysed at different levels: biosynthesis pathway activities (enzyme and transcript), lignin content, and capacity to incorporate new assimilates by using (13)C labelling. Elevated CO(2) and ozone had opposite effects on many parameters (growth, biomass, cambial activity, wood cell wall thickness) except on lignin content which was increased by elevated CO(2) and/or ozone. However, this increased lignification was due to different response mechanisms. Under elevated CO(2), carbon supply to the stem and effective lignin synthesis were enhanced, leading to increased lignin content, although there was a reduction in the level of some enzyme and transcript involved in the lignin pathway. Ozone treatment induced a reduction in carbon supply and effective lignin synthesis as well as transcripts from all steps of the lignin pathway and some corresponding enzyme activities. However, lignin content was increased under ozone probably due to variations in other major components of the cell wall. Both mechanisms seemed to coexist under combined treatment and resulted in a high increase in lignin content.


Assuntos
Dióxido de Carbono/metabolismo , Lignina/metabolismo , Ozônio/metabolismo , Populus/metabolismo , Madeira/metabolismo , Populus/crescimento & desenvolvimento , Madeira/crescimento & desenvolvimento
3.
J Exp Bot ; 62(10): 3575-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21357770

RESUMO

Wood formation in trees is a dynamic process that is strongly affected by environmental factors. However, the impact of ozone on wood is poorly documented. The objective of this study was to assess the effects of ozone on wood formation by focusing on the two major wood components, cellulose and lignin, and analysing any anatomical modifications. Young hybrid poplars (Populus tremula × alba) were cultivated under different ozone concentrations (50, 100, 200, and 300 l l(-1)). As upright poplars usually develop tension wood in a non-set pattern, the trees were bent in order to induce tension wood formation on the upper side of the stem and normal or opposite wood on the lower side. Biosynthesis of cellulose and lignin (enzymes and RNA levels), together with cambial growth, decreased in response to ozone exposure. The cellulose to lignin ratio was reduced, suggesting that cellulose biosynthesis was more affected than that of lignin. Tension wood was generally more altered than opposite wood, especially at the anatomical level. Tension wood may be more susceptible to reduced carbon allocation to the stems under ozone exposure. These results suggested a coordinated regulation of cellulose and lignin deposition to sustain mechanical strength under ozone. The modifications of the cellulose to lignin ratio and wood anatomy could allow the tree to maintain radial growth while minimizing carbon cost.


Assuntos
Celulose/metabolismo , Lignina/metabolismo , Ozônio/farmacologia , Populus/metabolismo , Madeira/metabolismo , Populus/efeitos dos fármacos
4.
Physiol Plant ; 134(4): 559-74, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18823329

RESUMO

Young poplar trees (Populus tremula Michx. x Populus alba L. clone INRA 717-1B4) were subjected to 120 ppb of ozone for 35 days in phytotronic chambers. Treated trees displayed precocious leaf senescence and visible symptoms of injury (dark brown/black upper surface stippling) exclusively observed on fully expanded leaves. In these leaves, ozone reduced parameters related to photochemistry (Chl content and maximum rate of photosynthetic electron transport) and photosynthetic CO(2) fixation [net CO(2) assimilation, Rubisco (ribulose-1,5-bisphosphate carboxylase oxygenase) activity and maximum velocity of Rubisco for carboxylation]. In fully expanded leaves, the rate of photorespiration as estimated from Chl fluorescence was markedly impaired by the ozone treatment together with the activity of photorespiratory enzymes (Rubisco and glycolate oxidase). Immunoblot analysis revealed a decrease in the content of serine hydroxymethyltransferase in treated mature leaves, while the content of the H subunit of the glycine decarboxylase complex was not modified. Leaves in the early period of expansion were exempt from visible symptoms of injury and remained unaffected as regards all measured parameters. Leaves reaching full expansion under ozone exposure showed potential responses of protection (stimulation of mitochondrial respiration and transitory stomatal closure). Our data underline the major role of leaf phenology in ozone sensitivity of photosynthetic processes and reveal a marked ozone-induced inhibition of photorespiration.


Assuntos
Ozônio/farmacologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Populus/metabolismo , Análise de Variância , Dióxido de Carbono/metabolismo , Respiração Celular/efeitos dos fármacos , Clorofila/metabolismo , Complexo Glicina Descarboxilase/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Modelos Lineares , Modelos Biológicos , Folhas de Planta/efeitos dos fármacos , Populus/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/metabolismo , Árvores/efeitos dos fármacos , Árvores/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa