Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Molecules ; 29(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893471

RESUMO

Ganoderma lucidum, renowned as an essential edible and medicinal mushroom in China, remains shrouded in limited understanding concerning the intrinsic mechanisms governing the accumulation of active components and potential protein expression across its diverse developmental stages. Accordingly, this study employed a meticulous integration of metabolomics and proteomics techniques to scrutinize the dynamic alterations in metabolite accumulation and protein expression in G. lucidum throughout its growth phases. The metabolomics analysis unveiled elevated levels of triterpenoids, steroids, and polyphenolic compounds during the budding stage (BS) of mushroom growth, with prominent compounds including Diplazium and Ganoderenic acids E, H, and I, alongside key steroids such as cholesterol and 4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol. Additionally, nutrients such as polysaccharides, flavonoids, and purines exhibited heightened presence during the maturation stage (FS) of ascospores. Proteomic scrutiny demonstrated the modulation of triterpenoid synthesis by the CYP450, HMGR, HMGS, and ERG protein families, all exhibiting a decline as G. lucidum progressed, except for the ARE family, which displayed an upward trajectory. Therefore, BS is recommended as the best harvesting period for G. lucidum. This investigation contributes novel insights into the holistic exploitation of G. lucidum.


Assuntos
Proteômica , Reishi , Triterpenos , Reishi/metabolismo , Reishi/crescimento & desenvolvimento , Reishi/química , Triterpenos/metabolismo , Triterpenos/química , Proteômica/métodos , Metabolômica/métodos , Proteínas Fúngicas/metabolismo
2.
Molecules ; 27(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35889504

RESUMO

In contrast to the stem and fruit of Akebia quinata, A. quinata leaves as a source rich in phenolic compounds with potentially beneficial pharmacological activities have been largely overlooked. To develop and use A. quinata leaves as a resource, we evaluated its potential as a cardiovascular-protective agent. Herein, we investigated the effects and potential mechanisms of A. quinata leaves extract on lipopolysaccharide (LPS)-induced inflammatory responses in human umbilical vein endothelial cells. We found that A. quinata leaves extract pretreatment of 10 µg/mL significantly attenuated LPS-induced protein expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1. Furthermore, this extract also suppressed LPS-induced phosphorylation of nuclear factor-κB p65. In order to elucidate the chemical profiles of the samples, the HPLC fingerprint was established, and prominent peaks were identified via HPLC-electrospray ionization-mass spectrometry. Multivariate statistical analyses, including hierarchical cluster analysis, principal component analysis, and partial least-squares discriminant analysis, were performed to evaluate the clustering of the samples. It was found that isochlorogenic acid C was a key marker for the classification of A. quinata leaves from the Gongju and Muju city in Korea. Collectively, this study not only suggested the potential of A. quinata leaves as a novel therapeutic candidate for inflammatory cardiovascular disease but also developed a quality control method for A. quinata leaves, which could help to expand the application of A. quinata.


Assuntos
Lipopolissacarídeos , Extratos Vegetais , Frutas , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular , NF-kappa B , Fenóis/farmacologia , Extratos Vegetais/química , Folhas de Planta
3.
Cell Biol Int ; 45(7): 1404-1414, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33620119

RESUMO

Melanoma is one of the most aggressive skin cancers. Existing evidence has reported the aberrant expression of microRNAs (miRNAs) in melanoma, but their putative targets and underlying downstream effects remain to be further understood. Herein, we explored the suppressive role of miR-485-5p in melanoma progression. Initial bioinformatics analyses showed that the PRRX1 gene was differentially expressed in melanoma, while miR-485-5p was predicted to be a potential regulatory miRNA binding to PRRX1 mRNA. We confirmed that PRRX1 was upregulated, while miR-485-5p was downregulated in human melanoma samples compared with adjacent normal skin tissues. We then showed that PRRX1 was a target gene of miR-485-5p by dual-luciferase reporter gene assay. Moreover, a reduction in the expression of PRRX1 and downregulation of important proteins of the transforming growth factor-beta (TGFß) signaling pathway was observed after miR-485-5p overexpression. Furthermore, miR-485-5p overexpression or PRRX1 knockdown suppressed epithelial-mesenchymal transition, cell viability, migration, and invasion, and promoted cell apoptosis in melanoma cells. Our study demonstrates the tumor-suppressive functions of miR-485-5p in the development of human melanoma, providing a potential target for therapy.


Assuntos
Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , MicroRNAs/fisiologia , Adulto , Idoso , Apoptose , Linhagem Celular Tumoral , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fator de Crescimento Transformador beta/metabolismo
4.
Biol Pharm Bull ; 42(1): 10-17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30606981

RESUMO

Inonotus hispidus is an anti-tumour drug used in folk medicine. (4S,5S)-4-Hydroxy-3,5-dimethoxycyclohex-2-enone (HDE) is a compound isolated from Inonotus hispidus for the first time. However, the mechanisms underlying its therapeutic effects have not been elucidated. In this study, the in vitro screening, in vivo anti-tumour effects, mechanism of action, pharmacokinetics, and tissue distribution of HDE were investigated. HDE could inhibit the proliferation of HepG2 cells. Additionally, its half-maximal inhibitory concentration was 7.9 µg/mL. Increasing HDE concentrations significantly increased apoptosis rate in a dose-dependent manner. Furthermore, HDE was rapidly absorbed into mouse plasma, reaching a maximum concentration at 30 min. The area under the plasma HDE concentration-time curves for the studied organs were as follows: spleen > liver > lung > kidney > muscle > thymus > heart > brain. HDE also inhibited tumour growth up to 69%. The weights of organs harvested from HDE-treated mice were not significantly different from those harvested from control mice. Furthermore, HDE upregulated Fas expression and downregulated FasL expression in HepG2 cells. HDE significantly increased caspase-3 and caspase-8 activity. The anti-tumour effect of HDE might be realized by activating the Fas-mediated apoptotic pathway. We also found that HDE undergoes enterohepatic circulation or is quickly absorbed by the body, and the drug is released back into systemic circulation. In conclusion, HDE significantly inhibited H22 hepatocarcinoma cells (H22)tumour growth in mice without damaging organs; therefore, it may be suitable for treating liver cancer.


Assuntos
Antineoplásicos/farmacocinética , Basidiomycota , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Células A549 , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/uso terapêutico , Basidiomycota/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Feminino , Fungos/isolamento & purificação , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos ICR , Distribuição Aleatória , Resultado do Tratamento
5.
Zhongguo Zhong Yao Za Zhi ; 44(9): 1836-1841, 2019 May.
Artigo em Chinês | MEDLINE | ID: mdl-31342710

RESUMO

The chemical constituents from the fruiting bodies of Tremella sanguinea were separated and purified by column chromatography on silica gel,ODS,Sephadex LH-20,and RP-HPLC. The structures of the isolated compounds were identified on the basis of physicochemical properties and spectroscopic data analysis,as well as comparisons with the data reported in the literature. Sixteen compounds were isolated from the 90% ethanol extract of the fruiting bodies of T. sanguinea,which were identified as( 22 E)-5α,8α-epidioxy-24-methyl-cholesta-6,9( 11),22-trien-3ß-ol( 1),( 22 E)-5α,8α-epidioxyergosta-6,22-dien-3ß-ol( 2),cerevisterol( 3),ergosta-7-ene-3ß,5α,6ß-triol( 4),( 22 E)-6ß-methoxyergosta-7,22-diene-3ß,5α-diol( 5),ergosta-7-en-3ß-ol( 6),4-hydroxy-methylincisterol( 7),2-pyrrolidone( 8),nicotinamide( 9),1-( 3-indolyl)-3-dihydroxypropan-1-one( 10),yangambin( 11),linoleic acid( 12),( 9 Z,12 Z,15 Z)-2,3-dihydroxypropyl octadeca-trienoate( 13),( 9 Z,12 Z)-2,3-dihydroxypropyl-octadeca-dienoate( 14),crypticin B( 15)and 3-phenyllactic acid( 16). All compounds were isolated from T. sanguinea for the first time. Except for compounds 6,9 and 12,the remained compounds were isolated from the genus Tremella for the first time.


Assuntos
Basidiomycota/química , Carpóforos/química , Estrutura Molecular
6.
Zhongguo Zhong Yao Za Zhi ; 44(24): 5352-5357, 2019 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-32237379

RESUMO

In order to improve the quality and yield of Gastrodia elata f. glauca,determine the suitable Armillaria strains for the accompanying experiment in Xiaocaoba,Yiliang,four Armillaria strains were selected. They were used for G. elata cultivation,and the gene sequence,r DNA-ITS,ß-tubulin and EF1-α of four Armillaria strains,were compared and analyzed. The yield was mesured in November which was based on previous laboratory research. The tubers were washed and steamed,then dried and powdered. The content of gastrodin and p-hydroxybenzyl alcohol was determined by UPLC,the polysaccharide was determined by phenol-concentrated sulfuric acid method. The results showed that the strains M1,M2,M3 and M4 were Armillaria gallica group but there were differences in the yield and active ingredient content when they were cultivated with the same G. elata. The yield of G. elata( Jian Ma) was the lowest when cultivated with Armillaria strain M3,but it was not the same when used M1,0. 981 kg·m-2,the highest yield in the four stains.The content of gastrodin was 0. 581%,the total content of gastrodin and p-hydroxybenzyl alcohol was 0. 595%,when accompanied with M1 strains. It was higher than other strains. The content of G. elata polysaccharide was 2. 132%,which was similar to the content of M3 strain,higher than that of M2 and M4 strain. Selecting phylogenesis of Armillaria strians,the content of active ingredient,and the yield as indicators,it was concluded concerned that the M1 strain was the best of four strains. The results will provide a theoretical basis and guidance for higher yield and quality in cultivation of G. elata in Yiliang.


Assuntos
Armillaria/fisiologia , Gastrodia/química , Gastrodia/microbiologia , Tubérculos/química , Armillaria/classificação , Filogenia , Plantas Medicinais/química , Plantas Medicinais/microbiologia
7.
Zhongguo Zhong Yao Za Zhi ; 42(5): 915-922, 2017 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-28994535

RESUMO

Seven lanostane-type triterpenes including fomitopsin C(1),3-keto-dehydrosulfurenic acid(2),dehydroeburiconic acid(3),3-acetyloxylanosta-8, 24-dien-21-oic acid(4),pinicolic acid A(5),trametenolic acid B(6),and eburicoic acid(7),were isolated from the fruitbodies of Fomitopsis pinicola and F. officinalis. In vitro assay, all compounds were evaluated against MCF-7, HeLa, HepG2 and A549 cells lines using the MTT assay and the structure-activity relationship of antitumor activity was discussed. The results showed that the seven compounds were more sensitive to MCF-7 cells.The IC50 value for MCF-7 was 2<5<4<1<3<6<7. H22 tumor mouse model was used to assay compounds 2, 3, 4 and 5 in vivo. Compounds 2 and 4 had obvious effect and the necrosis area and measurement were positively correlated. The results showed that compounds 2, 4 and 5 had significant antitumor activities at a dose of 20 mg•L⁻¹ with 65.31%, 56.71%, 58.72% suppression, respectively, approaching to CTX group with 69.19% suppression in subcutaneous H22-implanted mice.The results showed that these compounds had significant against the expression of VEGF, cytokines IL-4 and IFN-γ tumor, additionally, the structure-activity relationship of lanostane-type triterpenes indicated that the acetoxyl or carbonyl at C-3 and hydroxy at C-15 can enhance the antitumor activity.


Assuntos
Antineoplásicos/isolamento & purificação , Coriolaceae/química , Triterpenos/isolamento & purificação , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Interferon gama/metabolismo , Interleucina-4/metabolismo , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Triterpenos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Biotechnol Bioeng ; 113(6): 1273-83, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26639315

RESUMO

High throughput experimental strategies are central to the rapid optimization of biologics purification processes. In this work, we extend common high throughput technologies towards the characterization of a multi-column chromatography process for a monoclonal antibody (mAb). Scale-down strategies were first evaluated by comparing breakthrough, retention, and performance (yields and clearance of aggregates and host cell protein) across miniature and lab scale columns. The process operating space was then evaluated using several integrated formats, with batch experimentation to define process testing ranges, miniature columns to evaluate the operating space, and comparison to traditional scale columns to establish scale-up correlations and verify the determined operating space. When compared to an independent characterization study at traditional lab column scale, the high throughput approach identified the same control parameters and similar process sensitivity. Importantly, the high throughput approach significantly decreased time and material needs while improving prediction robustness. Miniature columns and manufacturing scale centerpoint data comparisons support the validity of this approach, making the high throughput strategy an attractive and appropriate scale-down tool for the formal characterization of biotherapeutic processes in the future if regulatory acceptance of the miniature column data can be achieved. Biotechnol. Bioeng. 2016;113: 1273-1283. © 2015 Wiley Periodicals, Inc.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Células CHO/química , Cromatografia por Troca Iônica/métodos , Ensaios de Triagem em Larga Escala/métodos , Manejo de Espécimes/métodos , Animais , Cricetulus , Contaminação de Medicamentos/prevenção & controle
9.
Zhong Yao Cai ; 39(2): 389-94, 2016 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-30080374

RESUMO

Objective: To study the inhibitory effect and the mechanism of solid fermentation powder( SFP) of Inonotus hispidus on H22 bearing mice. Methods: The H22 transplanted models of mice were established by H22 ascites tumor. 90 mice were divided into nine groups as control,model,cytoxan( CTX,20 mg / kg) positive control,high-,mid-,low-dose( 1 000,750,and 500 mg / kg) of corn SFP of Inonotus hispidus,and high-,mid-,low-dose( 1 000,750,and 500 mg / kg) of sorghum SFP of Inonotus hispidus. On the day after being inoculated with H22 tumor cells, mice were given SFP of Inonotus hispidus once daily for consecutive 11 d. And then the increaseing of the tumor inhibitory rate,body weight,thymus,spleen,and liver indexes were calculated; and the histopathologic changes of tumor of H22 bearing mice were observed. The activities of MDA,SOD and CAT, the contents of GSH-Px in liver homogenates and blood serum,and the number of IL-2,VEGF,and IFN-γ in blood serum were detected. Results: The treatment with SFP of Inonotus hispidus significantly increased the body weight,thymus index,spleen,and liver indexes. The histopathologic study showed that the necrosis in H22 cells was induced,and the hepatic SOD,CAT,GSH-Px activities were increased,the MDA in liver homogenates and blood serum were decreased, the serum levels of IL-2 and IFN-γ were elevated, and the VEGF level was reduced. Conclusion: SFP of Inonotus hispidus have an antitumor effect on H22 bearing mice,and the possible mechanism may be due to its antioxidant activity,improving immunofunction,and antiangiogenetic action.


Assuntos
Fermentação , Animais , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Neoplasias Hepáticas , Camundongos , Baço , Fator A de Crescimento do Endotélio Vascular
10.
Antimicrob Agents Chemother ; 58(11): 6861-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25182647

RESUMO

Resistance to the 2'-F-2'-C-methylguanosine monophosphate nucleotide hepatitis C virus (HCV) inhibitors PSI-352938 and PSI-353661 was associated with a combination of amino acid changes (changes of S to G at position 15 [S15G], C223H, and V321I) within the genotype 2a nonstructural protein 5B (NS5B), an RNA-dependent RNA polymerase. To understand the role of these residues in viral replication, we examined the effects of single and multiple point mutations on replication fitness and inhibition by a series of nucleotide analog inhibitors. An acidic residue at position 15 reduced replicon fitness, consistent with its proximity to the RNA template. A change of the residue at position 223 to an acidic or large residue reduced replicon fitness, consistent with its proposed proximity to the incoming nucleoside triphosphate (NTP). A change of the residue at position 321 to a charged residue was not tolerated, consistent with its position within a hydrophobic cavity. This triple resistance mutation was specific to both genotype 2a virus and 2'-F-2'-C-methylguanosine inhibitors. A crystal structure of the NS5B S15G/C223H/V321I mutant of the JFH-1 isolate exhibited rearrangement to a conformation potentially consistent with short primer-template RNA binding, which could suggest a mechanism of resistance accomplished through a change in the NS5B conformation, which was better tolerated by genotype 2a virus than by viruses of other genotypes.


Assuntos
Farmacorresistência Viral/genética , Hepacivirus/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/ultraestrutura , Replicação Viral/genética , Antivirais/farmacologia , Cristalografia por Raios X , Óxidos P-Cíclicos/farmacologia , Guanosina Monofosfato/análogos & derivados , Guanosina Monofosfato/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/crescimento & desenvolvimento , Humanos , Nucleosídeos/farmacologia , Estrutura Terciária de Proteína , RNA Viral/genética , Proteínas de Ligação a RNA/genética
11.
Eur J Pharmacol ; 963: 176269, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096966

RESUMO

This study aimed to comparatively investigate the anti-tumor mechanisms of steroids including ergosterol, ß-sitosterol, cholesterol, and fucosterol. The model of H22 tumor-bearing mice was constructed based on histopathological data and biochemical parameters, while serums were subjected to metabolomics analysis to study the potential anti-tumor mechanisms. The results indicated that the four steroids exhibited different degrees of anti-tumor effects on H22 mice. The tumor inhibition rates were 63.25% for ergosterol, 56.41% for ß-sitosterol, 61.54% for cholesterol, and 72.65% for fucosterol. Metabolomic analyses revealed that 87, 71, and 129 differential metabolites were identified in ergosterol, cholesterol, and fucosterol treatment groups, respectively. The fucosterol treatment group had the highest number of differential metabolites. At the same time, it mainly inhibited purine and amino acid metabolism to exert anti-tumor effects. Ergosterol enhanced immunity and affected pyruvate metabolism, and cholesterol inhibited purine metabolism. The chemical structure difference among ergosterol, cholesterol, and fucosterol is mainly at the number and position of sterol double bonds and the number and length of side chain carbons. Therefore, there is a structure-activity relationship between the structure of steroid compounds and their efficacy. This study provides a key foundation for the exploitation of the anti-tumor effects of steroids derived from different organisms.


Assuntos
Colesterol , Esteroides , Camundongos , Animais , Esteroides/farmacologia , Esteroides/uso terapêutico , Colesterol/metabolismo , Ergosterol/farmacologia , Ergosterol/uso terapêutico , Ergosterol/química , Relação Estrutura-Atividade , Purinas
12.
Zhongguo Zhong Yao Za Zhi ; 38(4): 539-45, 2013 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-23713280

RESUMO

OBJECTIVE: To summarize the studies on chemical constituents and pharmacological activities of lichens of Usnea genus. METHOD: A systematic literature survey was conducted to classifiy and summarize chemical constituents of lichens of Usnea genus, and sum up current studies on main pharmacological activities of lichens of the genus. RESULT: Lichens of Usnea genus contained multiple chemical constituents, primarily including mono-substituted phenyl rings, depsides, anthraquinones, dibenzofurans, steroids, terpenes, fatty acids and polysaccharides, with such biological activities as antitumor, antibacterial, anti-inflammation, anti-oxidation and antithrombosis. CONCLUSION: This essay provides reference for further studies and development of lichens of Usnea genus.


Assuntos
Medicina Tradicional Chinesa/métodos , Usnea/química , Animais , Humanos , Compostos Orgânicos/química , Compostos Orgânicos/farmacologia
13.
Zhongguo Zhong Yao Za Zhi ; 38(13): 2125-8, 2013 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-24079239

RESUMO

OBJECTIVE: To study the chemical constituents of the whole lichen of Usnea longissima. METHOD: The compounds were separated by silica gel, Sephadex LH-20 chromatography and high performance liquid chromatography (HPLC). The structures of the compounds isolated were identified by physico-chemical properties and spectral analysis. RESULT: Ten compounds were isolated and their structures were identified as (4aR,9bS)-2,6-diactyl-3,4a,7,9-tetrahydroxy-8,9b-dimethyl-1-oxo-1,4,4a, 9b-tetrahydrodibenzo [b,d]furan (1), (+)-usnic acid (2), orcinol (3), 18R-hydroxydihydroalloprotolichensterinic acid (4), 5, 8-epidioxy-5alpha, 8alpha-ergosta-6, 22E-dien-3beta-ol (5), ethyl everninate (6), arabitol(7), apigenin 7-O-beta-D-glucuronide (8), 3-hydroxy-5-methoxy-2-methylbenzoic acid(9), friedelin(10). CONCLUSION: Compound 1 was a new compound. Compound 8 was isolated from genu Usnea for the first time and compounds 3, 4 and 7 were isolated from U. longissima for the first time.


Assuntos
Medicina Tradicional da Mongólia , Usnea/química
14.
Zhongguo Zhong Yao Za Zhi ; 38(24): 4335-9, 2013 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-24791541

RESUMO

The chemical constituents from the fruiting bodies of Lyophyllum decastes (Fr.) Singer were studied in this paper. Thirteen compounds were isolated and purified by column chromatographies on silica gel and Sephadex LH-20. Their structures were identified by MS and NMR data analysis as adenosine (1), 2R, 3S, 4S, 8E)-2-[(2'R)-2-hydroxyheneicosanoylamino]-8-octadecene-1, 3, 4-triol (2), (2R, 3S, 4S, 8E)-2-[(2'R)-2-hydroxypentacosanoylamino]-8-octadecene-1, 3, 4-triol (3), nicotinic acid (4), (4E, 8E) -2-N-2-hydroxytetracosanoyl-1-O-beta-D-glycopyranosyl-9-methyl-4, 8-sphingadienine (5), D-mannitol (6), ergosteryl-3-O-beta-D-glucopyranoside (7), tuberoside (8), (2R, 3S, 4S, 8E)-2-[(2'R)-2-hydroxybehenoylamino]-8-octadecene-1, 3, 4-triol (9),(2R, 3S, 4S, 8E)-2-[(2'R) -2-hydroxytricosanoylamino] -8-octadecene-1, 3, 4-triol (10), (22E, 24R)-ergosta-7, 22-dien-3beta, 5alpha, 6beta-triol (11), (22E, 24R)-ergosta-5, 7, 22-trien-3beta-ol (12), and 5alpha, 8alpha-epidiory-(22E, 24R)-ergosta-6, 22-dien-3beta-ol (13), respectively. All the above compounds are first obtained from the mushroom and compounds 2-10 are reported to be obtained from the Lyophyllum for the first time.


Assuntos
Agaricales/química , Medicamentos de Ervas Chinesas/química , Frutas/química
15.
Eur J Pharmacol ; 953: 175831, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290681

RESUMO

Ergosterone has been proved to have potential antitumor effect on H22 tumor-bearing mice, but the antitumor mechanism and key regulators are still unclear. The current study was aimed to explore the key regulators responsible for antitumor of ergosterone using whole transcriptome and proteome analysis in H22 tumor-bearing mice model. The model of H22 tumor-bearing mice was constructed according to the histopathological data and biochemical parameters. The isolated tumor tissues of different treatment groups were subjected to transcriptomic and proteomic analysis. Our findings demonstrated that 472 differentially expressed genes and 658 proteins were identified in the tumor tissue of different treatment groups through RNA-Seq and liquid chromatography with tandem mass spectrometry-based proteomic analysis, respectively. The combined omics analysis revealed three critical genes/proteins, including Lars2, Sirpα and Hcls1 that could play a role in antitumor pathways. Furthermore, Lars2, Sirpα and Hcls1 genes/proteins, as key regulators of the antitumor effect of ergosterone, were verified by qRT-PCR and western blotting methods, respectively. In summary, our study provides new insights into analysing the antitumor mechanism of ergosterone from the point of view of gene and protein expression and will encourage further development of the antitumor pharmaceutical industry.


Assuntos
Neoplasias , Transcriptoma , Camundongos , Animais , Proteoma , Proteômica , Perfilação da Expressão Gênica
16.
Front Genet ; 14: 1221491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519891

RESUMO

Inonotus hispidus mainly growing in broad-leaved trees, including Morus alba, Fraxinus mandshurica, and Ulmus macrocarpa etc. The fruiting body of I. hispidus growing in M. alba (hereafter as MA) is used as a traditional Chinese medicine "Sanghuang". However, differences between the genetic material basis of I. hispidus growing in other tree species have not been reported. Therefore, in this paper, the genomic comparison between MA and I. hispidus growing in F. mandshurica (hereafter as FM) were studied. The whole genome of MA monokaryon was sequenced by Illumina combined with Pac Bio platform. Next, genome assembly, genome component prediction and genome functional annotation were performed. Comparative genomics analysis was performed between FM monokaryon and MA monokaryon, using MA as the reference. The results showed that, MA had 24 contigs with a N50 length of 2.6 Mb. Specifically, 5,342, 6,564, 1,595, 383 and 123 genes were annotated from GO, KEGG, KOG, CAZymes and CYP450, respectively. Moreover, comparative genomics showed that, the coding genes and total number of genes annotated in different databases of FM were higher than that of MA. This study provides a foundation for the medicinal application of FM as MA from the perspective of genetic composition.

17.
Int J Med Mushrooms ; 25(3): 47-62, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37017661

RESUMO

Inonotus hispidus is a well-known medicinal fungus and has been used in the treatment of cancer in China, but the material basis and potential mechanisms are still limited. The present study aimed to use in vitro experiments, UPLC-Q-TOF/MS and network pharmacology to predict active compounds and possible mechanisms of cultivated and wild I. hispidus. The cytotoxicity results in vitro showed that the extracts of cultivated and wild fruit bodies exhibited the highest inhibitory effects against MDA-MB-231 cells, and the 50% inhibition concentration, (IC50) values were 59.82 and 92.09 µg/mL, respectively. Of the two extracts, a total of 30 possible chemical components, including 21 polyphenols and nine fatty acids, were identified. Network pharmacology showed that five active polyphenols (osmundacetone, isohispidin, inotilone, hispolon, and inonotusin A) and 11 potential targets (HSP90AA1, AKT1, STAT3, EGFR, ESR1, PIK3CA, HIF1A, ERBB2, TERT, EP300 and HSP90AB1) were found to be closely associated with antitumor activity. Furthermore, 18 antitumor-related pathways were identified using the compound-target-pathway network. The molecular docking revealed that the active polyphenols had a good binding ability to the core targets, and the results were consistent with those of network pharmacology. Based on these findings, we speculate that I. hispidus can exert its antitumor activity through multicomponent, multitarget, and multichannel mechanisms of action.


Assuntos
Agaricales , Basidiomycota , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Simulação de Acoplamento Molecular
18.
Antimicrob Agents Chemother ; 56(7): 3767-75, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22526308

RESUMO

PSI-352938 is a novel cyclic phosphate prodrug of ß-D-2'-deoxy-2'-α-fluoro-2'-ß-C-methylguanosine-5'-monophosphate with potent anti-HCV activity. In order to inhibit the NS5B RNA-dependent RNA polymerase, PSI-352938 must be metabolized to the active triphosphate form, PSI-352666. During in vitro incubations with PSI-352938, significantly larger amounts of PSI-352666 were formed in primary hepatocytes than in clone A hepatitis C virus (HCV) replicon cells. Metabolism and biochemical assays were performed to define the molecular mechanism of PSI-352938 activation. The first step, removal of the isopropyl group on the 3',5'-cyclic phosphate moiety, was found to be cytochrome P450 (CYP) 3A4 dependent, with other CYP isoforms unable to catalyze the reaction. The second step, opening of the cyclic phosphate ring, was catalyzed by phosphodiesterases (PDEs) 2A1, 5A, 9A, and 11A4, all known to be expressed in the liver. The role of these enzymes in the activation of PSI-352938 was confirmed in primary human hepatocytes, where prodrug activation was reduced by inhibitors of CYP3A4 and PDEs. The third step, removal of the O(6)-ethyl group on the nucleobase, was shown to be catalyzed by adenosine deaminase-like protein 1. The resulting monophosphate was consecutively phosphorylated to the diphosphate and to the triphosphate PSI-352666 by guanylate kinase 1 and nucleoside diphosphate kinase, respectively. In addition, formation of nucleoside metabolites was observed in primary hepatocytes, and ecto-5'-nucleotidase was able to dephosphorylate the monophosphate metabolites. Since CYP3A4 is highly expressed in the liver, the CYP3A4-dependent metabolism of PSI-352938 makes it an effective liver-targeted prodrug, in part accounting for the potent antiviral activity observed clinically.


Assuntos
Antivirais/metabolismo , Óxidos P-Cíclicos/metabolismo , Hepacivirus/efeitos dos fármacos , Nucleosídeos/metabolismo , Células Cultivadas , Citocromo P-450 CYP3A/metabolismo , Guanilato Quinases/metabolismo , Hepatócitos/metabolismo , Humanos , Núcleosídeo-Difosfato Quinase/metabolismo , Diester Fosfórico Hidrolases/metabolismo
19.
Bioorg Med Chem Lett ; 22(18): 5924-9, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22892115

RESUMO

The 3',5'-cyclic phosphate prodrug 9-[ß-d-2'-deoxy-2'-α-fluoro-2'-ß-C-methylribofuranosyl]-2-amino-6-ethoxypurine, PSI-352938 1, has demonstrated promising anti-HCV efficacy in vitro and in human clinical trials. A structure-activity relationship study of the nucleoside 3',5'-cyclic phosphate series of ß-d-2'-deoxy-2'-α-fluoro-2'-ß-C-methylribofuranosyl nucleoside prodrugs was undertaken and the anti-HCV activity and in vitro safety profile were assessed. Cycloalkyl 3',5'-cyclic phosphate prodrugs were shown to be significantly more potent as inhibitors of HCV replication than branched and straight chain alkyl 3',5'-cyclic phosphate prodrugs. No cytotoxicity and mitochondrial toxicity for prodrugs 12, 13 and 19 were observed at concentrations up to 100 µm in vitro. Cycloalkyl esters of 3',5'-cyclic phosphate nucleotide prodrugs demonstrated the ability to produce high levels of active triphosphate in clone-A cells and primary human hepatocytes. Compounds 12, 13 and 19 also demonstrated the ability to effectively deliver in vivo high levels of active nucleoside phosphates to rat liver.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Nucleotídeos Cíclicos/farmacologia , Pró-Fármacos/farmacologia , Animais , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Humanos , Fígado/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Nucleotídeos Cíclicos/síntese química , Nucleotídeos Cíclicos/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Ratos , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
20.
J Nanosci Nanotechnol ; 12(8): 6163-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22962722

RESUMO

Ginsenosides, the major chemical composition of Chinese white ginseng (Panax ginseng C. A. Meyer), can inhibit tumor, enhance body immune function, prevent neurodegeneration. In this paper, for the first time we reported that the amount of ginsenosides in the equivalent extraction of the nanoscale Chinese white ginseng particles (NWGP) was 2.5 times more than that of microscale Chinese white ginseng particles (WGP). And the extractions from NWGP (1000 microg/ml) reached a high tumor inhibition of 64% exposed to human lung carcinoma cells (A549) and 74% exposed to human cervical cancer cells (Hela) after 72 h. Our work shows that the nanoscale Chinese WGP greatly improves the bioavailability of ginsenosides.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ginsenosídeos/isolamento & purificação , Panax/química , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , História do Século XIX , Humanos , Microscopia Eletrônica de Varredura , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa