RESUMO
Changes in human lifestyles have led to a dramatic increase in the incidence of Crohn's disease worldwide. Predicting the activity and remission of Crohn's disease has become an urgent research problem. In addition, the influence of each attribute in the test sample on the prediction results and the interpretability of the model still deserves further investigation. Therefore, in this paper, we proposed a wrapper feature selection classification model based on a combination of the improved ant colony optimization algorithm and the kernel extreme learning machine, called bIACOR-KELM-FS. IACOR introduces an evasive strategy and astrophysics strategy to balance the exploration and exploitation phases of the algorithm and enhance its optimization capabilities. The optimization capability of the proposed IACOR was validated on the IEEE CEC2017 benchmark test function. And the prediction was performed on Crohn's disease dataset. The results of the quantitative analysis showed that the prediction accuracy of bIACOR-KELM-FS for predicting the activity and remission of Crohn's disease reached 98.98%. The analysis of important attributes improved the interpretability of the model and provided a reference for the diagnosis of Crohn's disease. Therefore, the proposed model is considered a promising adjunctive diagnostic method for Crohn's disease.
Assuntos
Doença de Crohn , Humanos , Algoritmos , Aprendizado de Máquina , BenchmarkingRESUMO
Backgrounds and aims: Immunotherapies have formed an entirely new treatment paradigm for hepatocellular carcinoma (HCC). Tertiary lymphoid structure (TLS) has been associated with good response to immunotherapy in most solid tumors. Nonetheless, the role of TLS in human HCC remains controversial, and recent studies suggest that their functional heterogeneity may relate to different locations within the tumor. Exploring factors that influence the formation of TLS in HCC may provide more useful insights. However, factors affecting the presence of TLSs are still unclear. The human gut microbiota can regulate the host immune system and is associated with the efficacy of immunotherapy but, in HCC, whether the gut microbiota is related to the presence of TLS still lacks sufficient evidence. Methods: We performed pathological examinations of tumor and para-tumor tissue sections. Based on the location of TLS in tissues, all patients were divided into intratumoral TLS (It-TLS) group and desertic TLS (De-TLS) group. According to the grouping results, we statistically analyzed the clinical, biological, and pathological features; preoperative gut microbiota data; and postoperative pathological features of patients. Results: In a retrospective study cohort of 60 cases from a single center, differential microbiota analysis showed that compared with the De-TLS group, the abundance of Lachnoclostridium, Hungatella, Blautia, Fusobacterium, and Clostridium was increased in the It-TLS group. Among them, the enrichment of Lachnoclostridium was the most significant and was unrelated to the clinical, biological, and pathological features of the patients. It can be seen that the difference in abundance levels of microbiota is related to the presence of TLS. Conclusion: Our findings prove the enrichment of Lachnoclostridium-dominated gut microbiota is associated with the presence of It-TLS in HCC patients.