Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Neuropsychopharmacol ; 26(10): 680-691, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37603290

RESUMO

BACKGROUND: Although depression has been a serious neuropsychiatric disorder worldwide, current antidepressants used in clinical practice have various weaknesses, including delayed onset and low rates of efficacy. Recently, the development of new antidepressants from natural herbal medicine has become one of the important research hotspots. Cucurbitacin B is a natural compound widely distributed in the Cucurbitaceae and Cruciferae families and has many pharmacological activities. The present study aimed to investigate whether cucurbitacin B possess antidepressant-like effects in mice. METHODS: The antidepressant-like effects of cucurbitacin B on mice behaviors were explored using the forced swim test, tail suspension test, open field test, sucrose preference test, and a chronic unpredictable mild stress model of depression together. Then, western blotting and immunofluorescence were used to examine the effects of cucurbitacin B on the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling cascade and neurogenesis in the hippocampus of mice. Furthermore, BDNF-short hairpin RNA, K252a, and p-chlorophenylalanine methyl ester were adopted together to determine the antidepressant mechanism of cucurbitacin B. RESULTS: It was found that administration of cucurbitacin B indeed produced notable antidepressant-like effects in mice, which were accompanied with significant promotion in both the hippocampal BDNF-TrkB pathway and neurogenesis. The antidepressant mechanism of cucurbitacin B involves the hippocampal BDNF-TrkB system but not the serotonin system. CONCLUSIONS: Cucurbitacin B has the potential to be a novel antidepressant candidate.


Assuntos
Antidepressivos , Fator Neurotrófico Derivado do Encéfalo , Depressão , Animais , Humanos , Camundongos , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Modelos Animais de Doenças , Hipocampo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo
2.
Mol Psychiatry ; 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434056

RESUMO

Elucidating the molecular mechanism underlying the hyperactivity of the hypothalamic-pituitary-adrenal axis during chronic stress is critical for understanding depression and treating depression. The secretion of corticotropin-releasing hormone (CRH) from neurons in the paraventricular nucleus (PVN) of the hypothalamus is controlled by salt-inducible kinases (SIKs) and CREB-regulated transcription co-activators (CRTCs). We hypothesised that the SIK-CRTC system in the PVN might contribute to the pathogenesis of depression. Thus, the present study employed chronic social defeat stress (CSDS) and chronic unpredictable mild stress (CUMS) models of depression, various behavioural tests, virus-mediated gene transfer, enzyme-linked immunosorbent assay, western blotting, co-immunoprecipitation, quantitative real-time reverse transcription polymerase chain reaction, and immunofluorescence to investigate this connection. Our results revealed that both CSDS and CUMS induced significant changes in SIK1-CRTC1 signalling in PVN neurons. Both genetic knockdown of SIK1 and genetic overexpression of CRTC1 in the PVN simulated chronic stress, producing a depression-like phenotype in naive mice, and the CRTC1-CREB-CRH pathway mediates the pro-depressant actions induced by SIK1 knockdown in the PVN. In contrast, both genetic overexpression of SIK1 and genetic knockdown of CRTC1 in the PVN protected against CSDS and CUMS, leading to antidepressant-like effects in mice. Moreover, stereotactic infusion of TAT-SIK1 into the PVN also produced beneficial effects against chronic stress. Furthermore, the SIK1-CRTC1 system in the PVN played a role in the antidepressant actions of fluoxetine, paroxetine, venlafaxine, and duloxetine. Collectively, SIK1 and CRTC1 in PVN neurons are closely involved in depression neurobiology, and they could be viable targets for novel antidepressants.

3.
Pharmacol Biochem Behav ; 242: 173820, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996926

RESUMO

BACKGROUND: Emerging data has demonstrated that in mature neurons, SorCS2 localizes to the postsynaptic density of dendritic spines and facilitates plasma membrane sorting of TrkB by interacting with it, transmitting positive signaling from BDNF on neurons. Thus, it is possible that SorCS2 plays a role in the pathophysiology of depression by regulating the BDNF-TrkB system. METHODS: In the present study, SorCS2 expression in different brain regions [hippocampus, medial prefrontal cortex (mPFC), hypothalamus, amygdala, ventral tegmental area (VTA), and nucleus accumbens (NAc)] was thoroughly investigated in the chronic social defeat stress (CSDS) and chronic unpredictable mild stress (CUMS) models of depression. The changes in depressive-like behaviors, the hippocampal BDNF signaling cascade, and amounts of hippocampal immature neurons were further investigated after SorCS2 overexpression by microinjection of the adenovirus associated virus vector containing the coding sequence of mouse SorCS2 (AAV-SorCS2) into the hippocampus of mice exposed to CSDS or CUMS. RESULTS: It was found that both CSDS and CUMS significantly decreased the protein and mRNA expression of SorCS2 in the hippocampus but not in other brain regions. Chronic stress also notably downregulated the level of hippocampal SorCS2-TrkB binding in mice. In contrast, AAV-based genetic overexpression of hippocampal SorCS2 fully reversed the chronic stress-induced not only depressive-like behaviors but also decreased SorCS2-TrkB binding, BDNF signaling pathway, and amounts of immature neurons in the hippocampus of mice. CONCLUSION: All these results suggest that enhancing the hippocampal SorCS2 expression protects against chronic stress, producing antidepressant-like actions. Hippocampal SorCS2 may participate in depression neurobiology and be a potential antidepressant target. SIGNIFICANCE STATEMENT: Targeting of proteins to distinct subcellular compartments is essential for neuronal activity and modulated by VPS10P domain receptors which include SorCS2. In mature neurons, SorCS2 localizes to the postsynaptic density of dendritic spines and facilitates plasma membrane sorting of TrkB by interacting with it, transmitting positive signaling from BDNF on neurons. Our study is the first direct evidence preliminarily showing that SorCS2 plays a role in depression neurobiology. It was found that chronic stress induced not only depressive-like behaviors but also decreased SorCS2 expression in the hippocampus. Chronic stress did not affect SorCS2 expression in the mPFC, hypothalamus, amygdala, VTA, or NAc. In contrast, genetic overexpression of hippocampal SorCS2 prevented against chronic stress, producing antidepressant-like actions in mice. Thus, hippocampal SorCS2 is a potential participant underlying depression neurobiology and may be a novel antidepressant target. Our study may also extend the knowledge of the neurotrophic hypothesis of depression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Hipocampo , Camundongos Endogâmicos C57BL , Receptor trkB , Estresse Psicológico , Animais , Masculino , Camundongos , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Depressão/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Neurônios/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Receptor trkB/metabolismo , Transdução de Sinais , Estresse Psicológico/metabolismo
4.
Neuropharmacology ; 260: 110129, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39179173

RESUMO

Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress is essential for the pathogenesis of depression, and increased activity of cAMP response element binding protein (CREB)-regulated transcription co-activator 1 (CRTC1) in the paraventricular nucleus (PVN) plays a critical role. As a well-investigated microRNA (miRNA), miR-184 has two forms, miR-184-3p and miR-184-5p. Recently, miRNAs target genes predictive analysis and dual-luciferase reporter assays identified an inhibitory role of miR-184-3p on CRTC1 expression. Therefore, we speculated that miR-184-3p regulation was responsible for the effects of chronic stress on CRTC1 in the PVN. Various methods, including the chronic social defeat stress (CSDS) model of depression, behavioral tests, Western blotting, co-immunoprecipitation (Co-IP), quantitative real-time reverse transcription PCR (qRT-PCR), immunofluorescence, and adeno-associated virus (AAV)-mediated gene transfer, were used. CSDS evidently downregulated the level of miR-184-3p, but not miR-184-5p, in the PVN. Genetic knockdown and pharmacological inhibition of miR-184-3p in the PVN induced various depressive-like symptoms (e.g., abnormal behaviors, HPA hyperactivity, enhanced CRTC1 function in PVN neurons, downregulation of hippocampal neurogenesis, and decreased brain-derived neurotrophic factor (BDNF) signaling) in naïve male C57BL/6J mice. In contrast, genetic overexpression and pharmacological activation of miR-184-3p in the PVN produced significant beneficial effects against CSDS. MiR-184-3p in the PVN was necessary for the antidepressant actions of two well-known SSRIs, fluoxetine and paroxetine. Collectively. miR-184-3p was also implicated in the neurobiology of depression and may be a viable target for novel antidepressants.


Assuntos
Depressão , Sistema Hipotálamo-Hipofisário , Camundongos Endogâmicos C57BL , MicroRNAs , Núcleo Hipotalâmico Paraventricular , Sistema Hipófise-Suprarrenal , Estresse Psicológico , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Núcleo Hipotalâmico Paraventricular/metabolismo , Masculino , Camundongos , Sistema Hipotálamo-Hipofisário/metabolismo , Depressão/metabolismo , Depressão/genética , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Derrota Social
5.
Front Plant Sci ; 14: 1169898, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600201

RESUMO

The Heilongjiang-Amur River Basin is one of the largest and most complex aquatic systems in Asia, comprising diverse wetland resources. The wetland vegetation in mid-high latitude areas has high natural value and is sensitive to climate changes. In this study, we investigated the wetland vegetation cover changes and associated responses to climate change in the Heilongjiang-Amur River Basin from 2000 to 2018 based on the growing season (May to September) climate and LAI data. Our results indicated that the wetland LAI increased at 0.014 m2·m-2/yr across Heilongjiang-Amur River Basin with the regional climate showed wetting and warming trends. On a regional scale, wetland vegetation in China and Russia had positive partial correlation with solar radiation and minimum air temperature, with precipitation showing a slight lag effect. In contrast, wetland vegetation in Mongolia had positive partial correlation with precipitation. These correlations were further investigated at different climate intervals. We found the precipitation is positively correlated with LAI in the warm regions while is negatively correlated with LAI in the wet regions, indicating an increase in precipitation is beneficial for the growth of wetland vegetation in heat sufficient areas, and when precipitation exceeds a certain threshold, it will hinder the growth of wetland vegetation. In the cold regions, we found solar radiation and minimum air temperature are positively correlated with LAI, suggesting SR and minimum air temperature instead of mean air temperature and maximum air temperature play more important roles in affecting the wetland vegetation growth in the heat limited areas. The LAI was found to be negatively correlated with maximum air temperature in the arid areas, indicating excessive temperature would inhibit the wetland vegetation growth when the water is limited. Our investigation can provide a scientific foundation for the trilateral region in wetland ecosystem protection and is beneficial for a more comprehensive understanding of the responses of wetlands in the middle and high latitudes to climate change.

6.
Neuropharmacology ; 227: 109437, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702294

RESUMO

Major depressive disorder is a frequently occurring neuropsychiatric disorder throughout the world. However, the limited and delayed therapeutic efficacy of monoaminergic medications has led to intensive research efforts to develop novel antidepressants. We have previously demonstrated that hippocampal salt-inducible kinase 2 (SIK2) plays a role in the pathogenesis of depression via regulating the downstream CREB-regulated transcription coactivator 1 (CRTC1)-cAMP response element-binding protein (CREB)-brain derived neurotrophic factor (BDNF) pathway. HG-9-91-01 is a potent and selective inhibitor of salt-inducible kinases (SIKs). The present study aims to explore whether HG-9-91-01 has antidepressant-like actions in male C57BL/6J mice. The chronic unpredictable mild stress (CUMS) model of depression, various behavioral tests, western blotting, co-immunoprecipitation, immunofluorescence, stereotactic infusion, and viral-mediated genetic knockdown were used together. It was found that hippocampal infusion of HG-9-91-01 induced significant antidepressant-like effects in the CUMS model, accompanied with preventing the enhancement of CUMS on the hippocampal SIK2 expression and cytoplasmic translocation of CRTC1. HG-9-91-01 treatment also reversed the decreasing effects of CUMS on the BDNF signaling cascade and adult neurogenesis in the hippocampus. Moreover, the antidepressant-like actions of HG-9-91-01 in mice required the hippocampal CRTC1-CREB-BDNF pathway. In conclusion, HG-9-91-01 has potential of being a novel antidepressant candidate.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Transtorno Depressivo Maior , Camundongos , Masculino , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Camundongos Endogâmicos C57BL , Antidepressivos/farmacologia , Cloreto de Sódio na Dieta , Estresse Psicológico/metabolismo , Depressão/metabolismo , Hipocampo , Modelos Animais de Doenças
7.
Zhongguo Yi Liao Qi Xie Za Zhi ; 29(4): 257-9, 2005 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-16268351

RESUMO

This article introduces the working principle, the structural design of a mobile digital hydraulic extracorporeal heart compression machine and its trial result on the human model. The result shows that the machine which has the advantages of easy operation, fast effectiveness, safety, line display and agile adjustment, is an ideal medical device for patients with cardiac arrest and is of great social benefit and great market expectations.


Assuntos
Massagem Cardíaca/instrumentação , Desenho de Equipamento
9.
Se Pu ; 20(6): 557-9, 2002 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-12683008

RESUMO

A method for the determination of hyaluronic acid in shark fin by high performance liquid chromatography (HPLC) is described. At 37 degrees C, with 0.2 mol/L Tris-HCl buffer solution, hyaluronic acid was converted to the hyaluronic acid disaccharide by zymohydrolysis with chondroitinase ABC. The chromatographic conditions were as follows: ZORBAX carbohydrate analysis column (4.6 mm i.d. x 250 mm, 5 microns); room temperature; UV-VIS detector set at 226 nm; mobile phase V(acetonitrile): V(0.5% phosphoric acid) = 2:98; 0.45 micron filter membrane, pumping filter; injection volume 10 microL; flow rate 1 mL/min. The calibration curve for the hyaluronic acid disaccharide was linear over the range of 25 g/L-600 g/L. This method was applied to the analysis of shark fin with satisfactory results. The hyaluronic acid contents in different shark fins were from 0.86% to 1.96%.


Assuntos
Condroitina ABC Liase , Cromatografia Líquida de Alta Pressão/métodos , Ácido Hialurônico/análise , Animais , Calibragem , Hidrólise , Tubarões
10.
Artigo em Chinês | WPRIM | ID: wpr-232962

RESUMO

This article introduces the working principle, the structural design of a mobile digital hydraulic extracorporeal heart compression machine and its trial result on the human model. The result shows that the machine which has the advantages of easy operation, fast effectiveness, safety, line display and agile adjustment, is an ideal medical device for patients with cardiac arrest and is of great social benefit and great market expectations.


Assuntos
Desenho de Equipamento , Massagem Cardíaca
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa