Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Carbohydr Polym ; 299: 120179, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876794

RESUMO

The mechanism underlying the intestinal transport of COS is not well understood. Here, transcriptome and proteome analyses were performed to identify potential critical molecules involved in COS transport. Enrichment analyses revealed that the differentially expressed genes in the duodenum of the COS-treated mice were mainly enriched in transmembrane and immune function. In particular, B2 m, Itgb2, and Slc9a1 were upregulated. The Slc9a1 inhibitor decreased the transport efficiency of COS both in MODE-K cells (in vitro) and in mice (in vivo). The transport of FITC-COS in Slc9a1-overexpressing MODE-K cells was significantly higher than that in empty vector-transfected cells (P < 0.01). Molecular docking analysis revealed the possibility of stable binding between COS and Slc9a1 through hydrogen bonding. This finding indicates that Slc9a1 plays a crucial role in COS transport in mice. This provides valuable insights for improving the absorption efficiency of COS as a drug adjuvant.


Assuntos
Transporte Biológico , Quitosana , Mucosa Intestinal , Trocador 1 de Sódio-Hidrogênio , Animais , Camundongos , Mucosa Intestinal/metabolismo , Simulação de Acoplamento Molecular , Oligossacarídeos , Trocador 1 de Sódio-Hidrogênio/metabolismo
3.
Vet Med Sci ; 8(6): 2773-2784, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36271488

RESUMO

BACKGROUND: As a kind of flavonoid, baicalin (C21 H18 O11 ) is extracted from Scutellaria baicalensis Georgi, the extract of which can be added to animal feed in China. OBJECTIVES: The present review will describe the current understanding of the pharmacological effects of baicalin in the regulation of inflammation, oxidative stress anti-virus and anti-tumour responses. METHODS: We highlight emerging literature that the application in livestock health and performance, the biological activities, the molecular mechanisms and the dosage forms of baicalin by analysing and summarising the main points of the cited literatures. RESULTS: It is found that baicalin can improve the functions of multiple physiological systems. Baicalin has a strong anti-inflammatory effect by regulating TLR4-NFκB-MAPK signalling pathway; it also can reduce oxidative stress by regulating Nrf2-Keap1 pathway; it can inhabit many kinds of virus such as influenza virus, respiratory virus, hepacivirus and others; it can also inhibit the growth of tumour cells by blocking the cell cycle or inducing apoptosis; and new dosage forms such as cationic solid lipid nanoparticles, cyclodextrin inclusion complexes or nanocrystalline can be applied to improve the deficiency of baicalin. CONCLUSIONS: In summary, these studies have elucidated a comprehensive report on the anti-inflammatory, anti-oxidant, anti-virus and anti-tumour of baicalin, these findings thus indicated that baicalin can be used effectively to the field of animal production in future when the appropriate dosage form is determined.


Assuntos
Flavonoides , Fator 2 Relacionado a NF-E2 , Animais , Proteína 1 Associada a ECH Semelhante a Kelch , Flavonoides/farmacologia , Antioxidantes , Anti-Inflamatórios
4.
Int Immunopharmacol ; 99: 107727, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34426115

RESUMO

Heat stress has severe implications on the health of mice involving intestinal mucosal barrier damage and dysregulated mucosal immune response. This study was designed with long-term heat stress to detect the protective effect of terpinen4-ol on body weight, colon length, organ index, morphological structure, inflammatory cytokines expression, Claudin-2, Occludin, and TLR4 signaling pathway of colonic tissue in mice under heat stress. A study found that oral administration of terpinen4-ol helped against mortality and intestinal inflammation in a mouse model of acute colitis induced by heat stress (40 °C per day for 4 h) exposed for 14 consecutive days. The mice were divided into five groups including control, heat stress, terpinen4-ol low dose (TER LD: 5 mg/kg), medium dose (TER MD: 10 mg/kg), and high dose (TER HD: 20 mg/kg) group. Our study showed that the heat-stress terpinen4-ol group had improved body weight, colon length, and organ index, the number of white blood cells, lymphocytes, and neutrophils in the blood as compared to the heat stress group. In addition, results showed that heat stress upregulated the expression of TLR4, p65, TNF-α, and IL-10. While, in mice receiving the oral administration of terpinen4-ol, the production of TNF-α, IL-10, TLR4, and p65 was suppressed on day 1, 7, and 14 of heat stress. In addition Claudin-2, Occludin mRNA levels were upregulated in mice receiving terpinen4-ol on day 1, 7, and 14 of heat stress. Furthermore, the IL-6, IL-10, TNF-α serum levels were also upregulated in mice under heat stress, but in mice receiving the oral administration of terpinen4-ol, the IL-6, IL-10, TNF-α level was down-regulated on day 1, 7, and 14 of heat stress. Histomorphological examination found that as compared to the control group, the muscle layer thickness and villi height of mice in the heat stress group were significantly reduced, while the changes of the above indicators in the terpinene4-ol groups were improved than those in the heat stress group. In conclusion, the terpinen4-ol has a protective effect on colonic tissue damage induced by heat stress.


Assuntos
Anti-Inflamatórios/uso terapêutico , Resposta ao Choque Térmico/efeitos dos fármacos , Terpenos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Claudinas/genética , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Citocinas/sangue , Citocinas/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Contagem de Leucócitos , Leucócitos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B , Ocludina/genética , Terpenos/farmacologia , Receptor 4 Toll-Like/genética , Fator de Transcrição RelA/genética
5.
Front Nutr ; 8: 748118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660669

RESUMO

Herein, we assessed the anti-inflammatory and intestinal barrier protective effects of butyrolactone-I (BTL-1), derived from the coral-derived endophytic fungus (Aspergillus terreus), using the LPS-induced IPEC-J2 inflammation model and the DSS-induced IBD model in mice. In IPEC-J2 cells, pretreatment with BTL-I significantly inhibited TLR4/NF-κB signaling pathway and JNK phosphorylation, resulting in the decrease of IL-1ß and IL-6 expression. Interestingly, BTL-1 pretreatment activated the phosphorylation of ERK and P38, which significantly enhanced the expression of TNF-α. Meanwhile, BTL-1 pretreatment upregulated tight junction protein expression (ZO-1, occludin, and claudin-1) and maintained intestinal barrier and intestinal permeability integrity. In mice, BTL-1 significantly alleviated the intestinal inflammatory response induced by DSS, inhibited TLR4/NF-κB signaling pathway, and MAPK signaling pathway, thus reducing the production of IL-1, IL-6, and TNF-α. Further, the expression of tight junction proteins (ZO-1, occludin, and claudin-1) was upregulated in BTL-1 administrated mice. Therefore, it has been suggested that butyrolactone-I alleviates inflammatory responses in LPS-stimulated IPEC-J2 and DSS-induced murine colitis by TLR4/NF-κB and MAPK signal pathway. Thereby, BTL-1 might potentially be used as an ocean drug to prevent intestinal bowel disease.

6.
Front Immunol ; 12: 717723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745096

RESUMO

Heat stressed pigs show typical characteristics of inflammatory bowel disease (IBD). However, little is known about the pathogenesis of heat stress (HS)-induced IBD in pigs. In this study, we determined the effects of HS on colon morphology, intestinal microbiota diversity, transcriptome genes (transcripts), and short chain fatty acids (SCFAs) metabolism in pigs. In addition, the correlation among these parameters was analyzed by weighted gene co-expression network analysis. Results showed that the liver and kidney functions related to blood biochemical indexes were partially changed in pigs under HS. Furthermore, the levels of diamine oxidase and D-lactic acid were significantly increased, whereas the levels of secretory immunoglobulin A were decreased. The integrity of colonic tissue was damaged under HS, as bleeding, lymphatic infiltration, and villi injury were observed. The concentrations of SCFAs in the colon, such as acetic acid and butyric acid, were decreased significantly. In addition, the composition of colon microbiota, such as decrease in Lactobacillus johnsonii, Lactobacillus reuteri and increase in Clostridium sensu stricto 1 of day 7 and 14 while under HS. These changes were associated with changes in the concentration of SCFAs and biochemical indexes above mentioned. Differentially expressed genes were enriched in the nucleotide-binding oligomerization domain-like receptor signaling pathway, Th17 cell differentiation, and IBD pathway, which were also associated with the changes in SCFAs. Thus, the structure, diversity of intestinal microorganisms, and changes in the levels of SCFAs in colon of heat stressed pigs changed significantly, contributing to the activation of immune response and inflammatory signal pathways and causing abnormal physiological and biochemical indexes and intestinal mucosal damage. These results highlight the interconnections between intestinal microbiota, SCFAs, and immune response and their role in the pathogenesis of stress induced IBD therapy.


Assuntos
Biodiversidade , Biomarcadores/sangue , Colo/metabolismo , Colo/microbiologia , Microbioma Gastrointestinal , Resposta ao Choque Térmico , Transcriptoma , Animais , Biologia Computacional/métodos , Ácidos Graxos Voláteis/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Metaboloma , Metabolômica/métodos , Suínos
7.
Front Vet Sci ; 8: 808233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35146015

RESUMO

Baicalin is a natural plant extract with anti-inflammatory and anti-oxidant activities. However, the molecular mechanism of baicalin on oxidative stress in IPEC-J2 cells exposed to LPS remains to be unclear. In this study, LPS stimulation significantly increased Toll-like receptor 4, tumor necrosis factor-α, and interleukins (IL-6 and IL-1ß) expression in IPEC-J2 cells, and it activated the nuclear factor (NF-κB) expression. While, baicalin exerted anti-inflammatory effects by inhibiting NF-κB signaling pathway. LPS stimulation significantly increased the levels of the oxidative stress marker MDA, inhibited the anti-oxidant enzymes catalase and superoxide dismutase, which were all reversed by baicalin pre-treatment. It was found that baicalin treatment activated the nuclear import of nuclear factor-erythroid 2 related factor 2 (Nrf2) protein, and significantly increased the mRNA and protein expression of its downstream anti-oxidant factors such as heme oxygenase-1 and quinone oxidoreductase-1, which suggested that baicalin exerted anti-oxidant effects by activating the Nrf2-HO1 signaling pathway. Thus, pretreatment with baicalin inhibited LPS - induced oxidative stress and protected the normal physiological function of IPEC-J2 cells via NF-κB and Nrf2-HO1 signaling pathways.

8.
Sci Rep ; 11(1): 20608, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663855

RESUMO

Heat stress can significantly affect the immune function of the animal body. Heat stress stimulates oxidative stress in intestinal tissue and suppresses the immune responses of mice. The protecting effects of chitosan on heat stress induced colitis have not been reported. Therefore, the aim of this study was to investigate the protective effects of chitosan on immune function in heat stressed mice. Mice were exposed to heat stress (40 °C per day for 4 h) for 14 consecutive days. The mice (C57BL/6J), were randomly divided into three groups including: control group, heat stress, Chitosan group (LD: group 300 mg/kg/day, MD: 600 mg/kg/day, HD: 1000 mg/kg/day). The results showed that tissue histology was improved in chitosan groups than heat stress group. The current study showed that the mice with oral administration of chitosan groups had improved body performance as compared with the heat stress group. The results also showed that in chitosan treated groups the production of HSP70, TLR4, p65, TNF-α, and IL-10 was suppressed on day 1, 7, and 14 as compared to the heat stress group. In addition Claudin-2, and Occludin mRNA levels were upregulated in mice receiving chitosan on day 1, 7, and 14 of heat stress. Furthermore, the IL-6, IL-10, and TNF-α plasma levels were down-regulated on day 1, 7, and 14 of heat stress in mice receiving the oral administration of chitosan. In conclusion, the results showed that chitosan has an anti-inflammatory ability to tolerate hot environmental conditions.


Assuntos
Quitosana/farmacologia , Resposta ao Choque Térmico/imunologia , Resposta ao Choque Térmico/fisiologia , Animais , Quitosana/metabolismo , Colite/tratamento farmacológico , Colite/imunologia , Colite/metabolismo , Citocinas/análise , Citocinas/sangue , Resposta ao Choque Térmico/efeitos dos fármacos , Inflamação , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa