Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(12): 6509-6520, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152128

RESUMO

Among all of the Super Elongation Complex (SEC) components, ELL1 (also known as ELL) is the only bona fide elongation factor that directly stimulates transcription elongation by RNA polymerase II. However, the mechanism(s) of functional regulation of ELL1 (referred to as ELL hereafter), through its stabilization, is completely unknown. Here, we report a function of human DBC1 in regulating ELL stability involving HDAC3, p300, and Siah1. Mechanistically, we show that p300-mediated site-specific acetylation increases, whereas HDAC3-mediated deacetylation decreases, ELL stability through polyubiquitylation by the E3 ubiquitin ligase Siah1. DBC1 competes with HDAC3 for the same binding sites on ELL and thus increases its acetylation and stability. Knockdown of DBC1 reduces ELL levels and expression of a significant number of genes, including those involved in glucose metabolism. Consistently, Type 2 diabetes patient-derived peripheral blood mononuclear cells show reduced expression of DBC1 and ELL and associated key target genes required for glucose homeostasis. Thus, we describe a pathway of regulating stability and functions of key elongation factor ELL for expression of diverse sets of genes, including ones that are linked to Type 2 diabetes pathogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína p300 Associada a E1A/metabolismo , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sítios de Ligação , Linhagem Celular , Diabetes Mellitus Tipo 2/patologia , Proteína p300 Associada a E1A/genética , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Histona Desacetilases/genética , Humanos , Leucócitos Mononucleares/metabolismo , Mutação , Ligação Proteica , Estabilidade Proteica , Transcrição Gênica , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Ubiquitinação
2.
Mol Cell Biol ; 42(10): e0015122, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36036574

RESUMO

Although ELL-associated factors 1 and 2 (EAF1/2) have been shown to enhance RNA polymerase II-mediated transcription in vitro, their functional roles in vivo are poorly known. In this report, we show functions of these proteins in regulating ELL stability through their competitive binding with HDAC3 at the N terminus of ELL. Reduced HDAC3 binding to ELL causes increased acetylation leading to reduced ubiquitylation-mediated degradation. Similar functional roles played by DBC1 in regulating ELL stability further prompted in-depth analyses that demonstrated presence of negative feedback loop mechanisms between DBC1 and EAF1/2 in maintaining overall ELL level. Mechanistically, increased DBC1 reduces EAF1/2 level through increased ubiquitylation involving E3 ubiquitin ligase TRIM28, whereas increased EAF1/2 reduces DBC1 level through reduced transcription. Physiologically, after a few passages, ELL levels in either DBC1 or EAF1 knockdown cells are restored through enhanced expression of EAF1 and DBC1, respectively. Interestingly, for maintenance of ELL level, mammalian cells prefer the EAF1-dependent pathway during exposure to genotoxic stress, and the DBC1-dependent pathway during exposure to growth factors. Thus, we describe coordinated functions of multiple factors, including EAF1/2, HDAC3, DBC1, and TRIM28 in regulating ELL protein level for optimal target gene expression in a context-dependent manner within mammalian cells.


Assuntos
RNA Polimerase II , Fatores de Elongação da Transcrição , Animais , Fatores de Elongação da Transcrição/metabolismo , Retroalimentação , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Mamíferos/metabolismo
3.
J Intercult Ethnopharmacol ; 3(2): 85-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26401353

RESUMO

AIM: The aim was to screen the selected Indian plants for their antibacterial efficacy against four cariogenic bacteria Lactobacillus acidophilus (LA)(Microbial Type Culture Collection [MTCC]-*447), Lactobacillus casei (LC) (MTCC-1423), Streptococcus mutans (SMU) (MTCC-890) and Staphylococcus aureus (MTCC-96). To identify and characterize active principle present in these plants for the treatment of dental caries. MATERIALS AND METHODS: The dried plant leaves materials are extracted by cold extraction using hexane, ethyl acetate, methanol, and distilled water. The solvents were evaporated, and the dried masses were suspended in dimethyl sulfoxide and used for anticariogenic activity by agar well diffusion method. Minimum inhibitory concentration (MIC) was evaluated by two-fold serial broth dilution method. Preliminary phytochemical analysis of effective extract was carried out by thin-layer chromatography (TLC) and bioautography. RESULTS: Ethyl acetate and hexane extract of Eucalyptus globules was found most effective against L. acidophilus with MIC value 31 µg/ml and 62 µg/ml, respectively. Ethyl acetate extracts of Acacia nilotica and methanolic extract of E. globules also exhibited antibacterial activity against SMU and L. casei with MIC value of 50 µg/ml. Qualitative analysis of E. globules revealed the presence of alkaloids, terpenoids, phenolic compounds, and cardiac glycosides. The active principle responsible for the anticariogenic activity from E. globules were separated by TLC and subjected to bioautography using SMU, LA and LC. CONCLUSION: Anticariogenic activity and preliminary phytochemical analysis revealed that E. globule have potential to treat dental caries.

4.
Saudi J Biol Sci ; 20(1): 69-74, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23961222

RESUMO

In the present study, in vitro anticariogenic potential of ethyl acetate, hexane and methanol and aqueous extracts of plant leaves of Eucalyptus globules Labill. were evaluated by using four cariogenic bacteria, Lactobacillus acidophilus, Lactobacillus casei, Staphylococcus aureus and Streptococcus mutans. Agar well diffusion method and minimum inhibitory concentration (MIC) were used for this purpose. The ethyl acetate extracted fraction of plant leaves showed good inhibitory effects against all selected bacteria. In Eucalyptus globules, hexane and ethyl acetate extracts found highly effective against, Lactobacillus acidophilus with MIC value of 0.031 and 0.062 mg/mL, respectively. Qualitative phytochemical investigation of above extracts showed the presence of alkaloids, phenolic compounds, steroids, cardiac glycosides and terpenes. Based on the MIC value and bioautography, ethyl acetate of plant leaf was selected for further study. Further investigation on the structure elucidation of the bioactive compound using IR, GC-MS and NMR techniques revealed the presence of alpha-farnesene, a sesquiterpene. Eucalyptus globules plant leaf extracts have great potential as anticariogenic agents that may be useful in the treatment of oral disease.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa