Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(22): 4885-4897.e14, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37804832

RESUMO

Human reasoning depends on reusing pieces of information by putting them together in new ways. However, very little is known about how compositional computation is implemented in the brain. Here, we ask participants to solve a series of problems that each require constructing a whole from a set of elements. With fMRI, we find that representations of novel constructed objects in the frontal cortex and hippocampus are relational and compositional. With MEG, we find that replay assembles elements into compounds, with each replay sequence constituting a hypothesis about a possible configuration of elements. The content of sequences evolves as participants solve each puzzle, progressing from predictable to uncertain elements and gradually converging on the correct configuration. Together, these results suggest a computational bridge between apparently distinct functions of hippocampal-prefrontal circuitry and a role for generative replay in compositional inference and hypothesis testing.


Assuntos
Hipocampo , Córtex Pré-Frontal , Humanos , Encéfalo , Lobo Frontal , Hipocampo/fisiologia , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Córtex Pré-Frontal/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-39285111

RESUMO

PURPOSE: Catheter-based radiofrequency ablation for pulmonary vein isolation has become the first line of treatment for atrial fibrillation in recent years. This requires a rather accurate map of the left atrial sub-endocardial surface including the ostia of the pulmonary veins, which requires dense sampling of the surface and currently takes more than 10 min. The focus of this work is to provide left atrial visualization early in the procedure to ease procedure complexity and enable further workflows, such as using catheters that have difficulty sampling the surface. METHODS: We propose a dense encoder-decoder network with a novel regularization term to reconstruct the shape of the left atrium from partial data which is derived from simple catheter maneuvers. To train the network, we acquire a large dataset of 3D atria shapes and generate corresponding catheter trajectories, from which traversed point clouds are obtained. Once trained, we show that the suggested network can sufficiently approximate the atrium shape based on a given trajectory. RESULTS: We compare several network solutions for the 3D atrium reconstruction. We demonstrate that the solution proposed produces realistic visualization using partial acquisition within a 3-min time interval using human clinical cases.

3.
Int J Comput Assist Radiol Surg ; 16(1): 133-140, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33211235

RESUMO

PURPOSE: Atrial fibrillation (AF), the most prevalent form of cardiac arrhythmia, afflicts millions worldwide. Here, we developed an imaging algorithm for the diagnosis and online guidance of radio-frequency ablation, which is currently the first line of treatment for AF and other arrhythmia. This requires the simultaneous mapping of the left atrium anatomy and the propagation of the electrical activation wave, and for some arrhythmia, within a single heartbeat. METHODS: We constructed a multi-frequency ultrasonic system consisting of 64 elements mounted on a spherical basket, operated in a synthetic aperture mode, that allows instant localization of thousands of points on the endocardial surface and yields a MRI-like geometric reconstruction. RESULTS: The system and surface localization algorithm were extensively tested and validated in a series of in silico and in vitro experiments. We report considerable improvement over traditional methods along with theoretical results that help refine the extracted shape. The results in left atrium-shaped silicon phantom were accurate to within 4 mm. CONCLUSIONS: A novel catheter system consisting of a basket of splines with multiple multi-frequency ultrasonic elements allows 3D anatomical mapping and real-time tracking of the entire heart chamber within a single heartbeat. These design parameters achieve highly acceptable reconstruction accuracy.


Assuntos
Fibrilação Atrial/diagnóstico por imagem , Ablação por Cateter/métodos , Fibrilação Atrial/cirurgia , Simulação por Computador , Átrios do Coração/fisiopatologia , Átrios do Coração/cirurgia , Humanos , Imageamento por Ressonância Magnética , Ultrassom
4.
Cells ; 10(12)2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34943859

RESUMO

We present a new classification approach for live cells, integrating together the spatial and temporal fluctuation maps and the quantitative optical thickness map of the cell, as acquired by common-path quantitative-phase dynamic imaging and processed with a deep-learning framework. We demonstrate this approach by classifying between two types of cancer cell lines of different metastatic potential originating from the same patient. It is based on the fact that both the cancer-cell morphology and its mechanical properties, as indicated by the cell temporal and spatial fluctuations, change over the disease progression. We tested different fusion methods for inputting both the morphological optical thickness maps and the coinciding spatio-temporal fluctuation maps of the cells to the classifying network framework. We show that the proposed integrated triple-path deep-learning architecture improves over deep-learning classification that is based only on the cell morphological evaluation via its quantitative optical thickness map, demonstrating the benefit in the acquisition of the cells over time and in extracting their spatio-temporal fluctuation maps, to be used as an input to the classifying deep neural network.


Assuntos
Algoritmos , Aprendizado Profundo , Neoplasias , Linhagem Celular Tumoral , Humanos , Modelos Teóricos , Neoplasias/patologia , Fatores de Tempo
5.
Neuron ; 109(4): 713-723.e7, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33357385

RESUMO

Knowledge of the structure of a problem, such as relationships between stimuli, enables rapid learning and flexible inference. Humans and other animals can abstract this structural knowledge and generalize it to solve new problems. For example, in spatial reasoning, shortest-path inferences are immediate in new environments. Spatial structural transfer is mediated by cells in entorhinal and (in humans) medial prefrontal cortices, which maintain their co-activation structure across different environments and behavioral states. Here, using fMRI, we show that entorhinal and ventromedial prefrontal cortex (vmPFC) representations perform a much broader role in generalizing the structure of problems. We introduce a task-remapping paradigm, where subjects solve multiple reinforcement learning (RL) problems differing in structural or sensory properties. We show that, as with space, entorhinal representations are preserved across different RL problems only if task structure is preserved. In vmPFC and ventral striatum, representations of prediction error also depend on task structure.


Assuntos
Córtex Entorrinal/fisiologia , Aprendizagem/fisiologia , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Reforço Psicológico , Adulto , Córtex Entorrinal/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Estimulação Luminosa/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Distribuição Aleatória , Adulto Jovem
6.
Neuron ; 100(2): 490-509, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30359611

RESUMO

It is proposed that a cognitive map encoding the relationships between entities in the world supports flexible behavior, but the majority of the neural evidence for such a system comes from studies of spatial navigation. Recent work describing neuronal parallels between spatial and non-spatial behaviors has rekindled the notion of a systematic organization of knowledge across multiple domains. We review experimental evidence and theoretical frameworks that point to principles unifying these apparently disparate functions. These principles describe how to learn and use abstract, generalizable knowledge and suggest that map-like representations observed in a spatial context may be an instance of general coding mechanisms capable of organizing knowledge of all kinds. We highlight how artificial agents endowed with such principles exhibit flexible behavior and learn map-like representations observed in the brain. Finally, we speculate on how these principles may offer insight into the extreme generalizations, abstractions, and inferences that characterize human cognition.


Assuntos
Encéfalo/fisiologia , Processos Mentais/fisiologia , Modelos Neurológicos , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa