RESUMO
In this report, we present the dinuclear copper(II) dimethylglyoxime (H2 dmg) complex [Cu2 (H2 dmg)(Hdmg)(dmg)]+ (1), which, in contrast to its mononuclear analogue [Cu(Hdmg)2 ] (2), is subject to a cooperativity-driven hydrolysis. The combined Lewis acidity of both copper centers increases the electrophilicity of the carbon atom in the bridging µ2 -O-N=C-group of H2 dmg and thus, facilitates the nucleophilic attack of H2 O. This hydrolysis yields butane-2,3-dione monoxime (3) and NH2 OH that, depending on the solvent, is then either oxidized or reduced. In ethanol, NH2 OH is reduced to NH4 + , yielding acetaldehyde as the oxidation product. In contrast, in CH3 CN, NH2 OH is oxidized by CuII to form N2 O and [Cu(CH3 CN)4 ]+ . Herein are presented the combined synthetic, theoretical, spectroscopic and spectrometric methods that indicate and establish the reaction pathway of this solvent-dependent reaction.