Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163682

RESUMO

A lack of primary stability and osteointegration in metallic implants may result in implant loosening and failure. Adding porosity to metallic implants reduces the stress shielding effect and improves implant performance, allowing the surrounding bone tissue to grow into the scaffold. However, a bioactive surface is needed to stimulate implant osteointegration and improve mechanical stability. In this study, porous titanium implants were produced via powder sintering to create different porous diameters and open interconnectivity. Two strategies were used to generate a bioactive surface on the metallic foams: (1) an inorganic alkali thermochemical treatment, (2) grafting a cell adhesive tripeptide (RGD). RGD peptides exhibit an affinity for integrins expressed by osteoblasts, and have been reported to improve osteoblast adhesion, whereas the thermochemical treatment is known to improve titanium implant osseointegration upon implantation. Bioactivated scaffolds and control samples were implanted into the tibiae of rabbits to analyze the effect of these two strategies in vivo regarding bone tissue regeneration through interconnected porosity. Histomorphometric evaluation was performed at 4 and 12 weeks after implantation. Bone-to-implant contact (BIC) and bone in-growth and on-growth were evaluated in different regions of interest (ROIs) inside and outside the implant. The results of this study show that after a long-term postoperative period, the RGD-coated samples presented higher quantification values of quantified newly formed bone tissue in the implant's outer area. However, the total analyzed bone in-growth was observed to be slightly greater in the scaffolds treated with alkali thermochemical treatment. These results suggest that both strategies contribute to enhancing porous metallic implant stability and osteointegration, and a combination of both strategies might be worth pursuing.


Assuntos
Álcalis/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Metalurgia , Oligopeptídeos/farmacologia , Osseointegração , Temperatura , Alicerces Teciduais/química , Titânio/farmacologia , Animais , Feminino , Implantes Experimentais , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Porosidade , Pós , Coelhos
2.
Vet Surg ; 49(8): 1626-1631, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32640113

RESUMO

OBJECTIVE: To describe a novel surgical approach to treat a critical-sized bone defect due to severe, radial atrophic nonunion in a miniature dog. STUDY DESIGN: Case report ANIMAL: A 1-year-old Yorkshire terrier with a critical-sized left radial defect after failed internal fixation of a transverse radial fracture. METHODS: Computed tomographic (CT) images of the radius were imported for three-dimensional (3D) printing of a custom-designed synthetic 3D-printed ß-tricalcium phosphate (ß-TCP) scaffold. The radius was exposed, and the ß-TCP scaffold was press-fitted in the bone gap underneath the plate. Recombinant human bone morphogenic protein-2 (RhBMP-2) collagen sponges were squeezed to soak the scaffold with growth factor and then placed on both sides of the synthetic graft. Two additional cortical screws were also placed prior to routine closure of the surgical site. RESULTS: Radiographic examination was consistent with complete healing of the radius defect 4 months after surgery. The bone plate was removed 10 months after surgery. According to CT examination 18 months after surgery, there was no evidence of the synthetic graft; instead, complete corticalization of the affected area was noted. Complete functional recovery was observed until the last clinical follow-up 36 months postoperatively. CONCLUSION: Screw fixation and use of a 3D-printed ceramic scaffold augmented with rhBMP-2 resulted in excellent bone regeneration of the nonunion and full recovery of a miniature breed dog. CLINICAL SIGNIFICANCE: The therapeutic approach used in this dog could be considered as an option for treatment of large-bone defects in veterinary orthopedics, especially for defects affecting the distal radius of miniature dogs.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Transplante Ósseo/veterinária , Fosfatos de Cálcio/química , Cães/cirurgia , Fraturas Mal-Unidas/veterinária , Impressão Tridimensional , Fraturas do Rádio/veterinária , Fator de Crescimento Transformador beta/metabolismo , Animais , Transplante Ósseo/instrumentação , Cães/lesões , Fraturas Mal-Unidas/cirurgia , Fraturas Mal-Unidas/terapia , Masculino , Fraturas do Rádio/cirurgia , Fraturas do Rádio/terapia , Proteínas Recombinantes/metabolismo
3.
J Neuroinflammation ; 13(1): 187, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27538577

RESUMO

BACKGROUND: Accumulating evidence suggest that the enteric nervous system (ENS) plays important roles in gastrointestinal inflammatory responses, which could be in part mediated by Toll-like receptor (TLR) activation. The aim of this study was to characterise the expression and functionality of TLR2/4/9 in the ENS. METHODS: TLR2/4/9 expression was assessed in the plexuses of adult rats and embryonic ENS cultures by immunofluorescence and quantitative PCR. Following stimulation with TLR2/4/9 ligands or their combinations, activation of NF-kB, production of TNF-α, IL-6 and MCP-1 and chemoattraction of RAW264.7 macrophages were evaluated by means of Western blot, ELISA, immunofluorescence and migration assays in transwell inserts. RESULTS: TLR2/4/9 staining colocalised with enteric neuronal markers, whereas their presence in enteroglial processes was low to inexistent. Stimulation of ENS cultures with selective ligands induced NF-kB activation and release of cytokines and chemokines by neurons and resident immunocytes. TLR2 neutralisation before lipopolysaccharide (LPS) challenge reduced production of inflammatory mediators, whereas combination of TLR2/4 ligands promoted macrophage migration. Combined stimulation of cultures with LPS and the CpG oligonucleotide 1826 (TLR4/9 ligands) caused a synergic increase in chemoattraction and cytokine production. CONCLUSIONS: Our results suggest that the ENS, and particularly enteric neurons, can integrate a variety of microbial signals and respond in a relatively selective fashion, depending on the particular TLRs stimulated. These findings additionally suggest that the ENS is capable of initiating a defensive response against pathogens and expanding inflammation.


Assuntos
Sistema Nervoso Entérico/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Receptor 2 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Anticorpos/farmacologia , Células Cultivadas , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia
4.
ACS Appl Mater Interfaces ; 11(9): 8818-8830, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30740968

RESUMO

Bone apatite consists of carbonated calcium-deficient hydroxyapatite (CDHA) nanocrystals. Biomimetic routes allow fabricating synthetic bone grafts that mimic biological apatite. In this work, we explored the role of two distinctive features of biomimetic apatites, namely, nanocrystal morphology (plate vs needle-like crystals) and carbonate content, on the bone regeneration potential of CDHA scaffolds in an in vivo canine model. Both ectopic bone formation and scaffold degradation were drastically affected by the nanocrystal morphology after intramuscular implantation. Fine-CDHA foams with needle-like nanocrystals, comparable in size to bone mineral, showed a markedly higher osteoinductive potential and a superior degradation than chemically identical coarse-CDHA foams with larger plate-shaped crystals. These findings correlated well with the superior bone-healing capacity showed by the fine-CDHA scaffolds when implanted intraosseously. Moreover, carbonate doping of CDHA, which resulted in small plate-shaped nanocrystals, accelerated both the intrinsic osteoinduction and the bone healing capacity, and significantly increased the cell-mediated resorption. These results suggest that tuning the chemical composition and the nanostructural features may allow the material to enter the physiological bone remodeling cycle, promoting a tight synchronization between scaffold degradation and bone formation.


Assuntos
Materiais Biomiméticos/química , Substitutos Ósseos/química , Nanopartículas/química , Animais , Materiais Biomiméticos/farmacologia , Regeneração Óssea , Substitutos Ósseos/farmacologia , Osso e Ossos/diagnóstico por imagem , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cães , Durapatita/química , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , Ratos , Alicerces Teciduais/química , Microtomografia por Raio-X
5.
Acta Biomater ; 79: 135-147, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30195084

RESUMO

There is an urgent need of synthetic bone grafts with enhanced osteogenic capacity. This can be achieved by combining biomaterials with exogenous growth factors, which however can have numerous undesired side effects, but also by tuning the intrinsic biomaterial properties. In a previous study, we showed the synergistic effect of nanostructure and pore architecture of biomimetic calcium deficient hydroxyapatite (CDHA) scaffolds in enhancing osteoinduction, i.e. fostering the differentiation of mesenchymal stem cells to bone forming cells. This was demonstrated by assessing bone formation after implanting the scaffolds intramuscularly. The present study goes one step forward, since it analyzes the effect of the geometrical features of the same CDHA scaffolds, obtained either by 3D-printing or by foaming, on the osteogenic potential and resorption behaviour in a bony environment. After 6 and 12 weeks of intraosseous implantation, both bone formation and material degradation had been drastically affected by the macropore architecture of the scaffolds. Whereas nanostructured CDHA was shown to be highly osteoconductive both in the robocast and foamed scaffolds, a superior osteogenic capacity was observed in the foamed scaffolds, which was associated with their higher intrinsic osteoinductive potential. Moreover, they showed a significantly higher cell-mediated degradation than the robocast constructs, with a simultaneous and progressive replacement of the scaffold by new bone. In conclusion, these results demonstrate that the control of macropore architecture is a crucial parameter in the design of synthetic bone grafts, which allows fostering both material degradation and new bone formation. Statement of Significance 3D-printing technologies open new perspectives for the design of patient-specific bone grafts, since they allow customizing the external shape together with the internal architecture of implants. In this respect, it is important to design the appropriate pore geometry to maximize the bone healing capacity of these implants. The present study analyses the effect of pore architecture of nanostructured hydroxyapatite scaffolds, obtained either by 3D-printing or foaming, on the osteogenic potential and scaffold resorption in an in vivo model. While nanostructured hydroxyapatite showed excellent osteoconductive properties irrespective of pore geometry, we demonstrated that the spherical, concave macropores of foamed scaffolds significantly promoted both material resorption and bone regeneration compared to the 3D-printed scaffolds with orthogonal-patterned struts and therefore prismatic, convex macropores.


Assuntos
Fosfatos de Cálcio/química , Nanoestruturas/química , Osteogênese , Impressão Tridimensional , Alicerces Teciduais/química , Animais , Cães , Durapatita/química , Imageamento Tridimensional , Nanoestruturas/ultraestrutura , Porosidade , Microtomografia por Raio-X
6.
ACS Appl Mater Interfaces ; 9(48): 41722-41736, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29116737

RESUMO

Some biomaterials are osteoinductive, that is, they are able to trigger the osteogenic process by inducing the differentiation of mesenchymal stem cells to the osteogenic lineage. Although the underlying mechanism is still unclear, microporosity and specific surface area (SSA) have been identified as critical factors in material-associated osteoinduction. However, only sintered ceramics, which have a limited range of porosities and SSA, have been analyzed so far. In this work, we were able to extend these ranges to the nanoscale, through the foaming and 3D-printing of biomimetic calcium phosphates, thereby obtaining scaffolds with controlled micro- and nanoporosity and with tailored macropore architectures. Calcium-deficient hydroxyapatite (CDHA) scaffolds were evaluated after 6 and 12 weeks in an ectopic-implantation canine model and compared with two sintered ceramics, biphasic calcium phosphate and ß-tricalcium phosphate. Only foams with spherical, concave macropores and not 3D-printed scaffolds with convex, prismatic macropores induced significant ectopic bone formation. Among them, biomimetic nanostructured CDHA produced the highest incidence of ectopic bone and accelerated bone formation when compared with conventional microstructured sintered calcium phosphates with the same macropore architecture. Moreover, they exhibited different bone formation patterns; in CDHA foams, the new ectopic bone progressively replaced the scaffold, whereas in sintered biphasic calcium phosphate scaffolds, bone was deposited on the surface of the material, progressively filling the pore space. In conclusion, this study demonstrates that the high reactivity of nanostructured biomimetic CDHA combined with a spherical, concave macroporosity allows the pushing of the osteoinduction potential beyond the limits of microstructured calcium phosphate ceramics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa