Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 108(4): 1559-1567, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31617960

RESUMO

Tissue engineering aims to regenerate and restore damaged human organs and tissues using scaffolds that can mimic the native tissues. The requirement for modern and efficient biomaterials that are capable of accelerating the healing process has been considerably increased. In this work, a novel electrospun poly(lactic acid) (PLA) nanoporous membrane incorporated with niobium pentoxide nanoparticles (Nb2 O5 ) for biomaterial applications was developed. Nb2 O5 nanoparticles were obtained by microwave-assisted hydrothermal synthesis, and different concentrations (0, 1, 3, and 5% wt/wt) were tested. Chemical, morphological, mechanical, and biological properties of membranes were evaluated. Cell viability results demonstrated that the membranes presented nontoxic effects. The incorporation of Nb2 O5 improved cell proliferation without impairing the wettability, porosity, and mechanical properties of membranes. Membranes containing Nb2 O5 nanoparticles presented biocompatible properties with suitable porosity, which facilitated cell attachment and proliferation while allowing diffusion of oxygen and nutrients. This study has demonstrated that Nb2 O5 nanoparticle-loaded electrospun PLA nanoporous membranes are potential candidates for drug delivery and wound dressing applications.


Assuntos
Teste de Materiais , Membranas Artificiais , Nanopartículas/química , Nióbio/química , Óxidos/química , Poliésteres/química , Alicerces Teciduais/química , Animais , Camundongos , Células NIH 3T3 , Porosidade
2.
Data Brief ; 18: 150-155, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29896504

RESUMO

These data and analyses support the research article "Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes" Robles et al. [1]. The data and analyses presented here include fitted curves for selected carbons of the 13C CP-MAS NMR analysis; SEM images of the raw and bleached fibers, graphics with chemical composition and visual images of the fibers throughout the process.

3.
Carbohydr Polym ; 183: 294-302, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352888

RESUMO

Tequila elaboration leaves two main byproducts that are undervalued (bagasse and leaves). Organosolv pulping and Total Chlorine Free bleaching were integrated to obtain cellulose fibers from agricultural waste which consisted of blue agave bagasse and leaf fibers; together they represent a green process which valorizes biomass waste. The obtained celluloses were characterized by FT-IR, colorimetry, and SEM and their extraction yields were evaluated. These celluloses were used to produce cellulose nanocrystals and cellulose nanofibers. First, an acid hydrolysis was performed in a sonication bath to induce cavitation during the reaction to produce cellulose nanocrystals. Then a high-pressure homogenization was selected to produce cellulose nanofibers. These nanocelluloses were characterized by powder XRD, Nanosizer, zeta potential, NMR, and electronic microscopy. Results showed that cellulose from organosolv pulps bleached with TCF bleaching is suitable for nanocellulose production. Moreover, the use of a new step to separate cellulose nanocrystals resulted in yields almost doubling traditional yields, while the rest of the properties remained within the expected.

4.
Materials (Basel) ; 9(12)2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-28774122

RESUMO

In this work, cellulose nanocrystals (CNCs) were obtained from flax fibers by an acid hydrolysis assisted by sonochemistry in order to reduce reaction times. The cavitation inducted during hydrolysis resulted in CNC with uniform shapes, and thus further pretreatments into the cellulose are not required. The obtained CNC exhibited a homogeneous morphology and high crystallinity, as well as typical values for surface charge. Additionally, CNC membranes were developed from CNC solution to evaluation as a drug delivery system by the incorporation of a model drug. The drug delivery studies were carried out using chlorhexidine (CHX) as a drug and the antimicrobial efficiency of the CNC membrane loaded with CHX was examined against Gram-positive bacteria Staphylococcus aureus (S. Aureus). The release of CHX from the CNC membranes is determined by UV-Vis. The obtaining methodology of the membranes proved to be simple, and these early studies showed a potential use in antibiotic drug delivery systems due to the release kinetics and the satisfactory antimicrobial activity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa