Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Toxicol Environ Health A ; 84(5): 196-212, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33292089

RESUMO

p-Synephrine (SN) is an alkaloid added to thermogenic formulations for weight loss that is predominantly absorbed in the human gastrointestinal tract (GI). As the adverse effects of SN on GI cells remain unclear, the aim of present study was to examine whether SN affected cell viability, cell cycle kinetics, genomic stability, redox status, and expression of cAMP/PKA pathway genes related to metabolism/energy homeostasis in stomach mucosa (MNP01) and colon adenocarcinoma (Caco-2) human cells. p-Synephrine at 25-5000 µM was not cytotoxic to both cell lines. At 2-200 µM, SN increased the formation of reactive oxygen species (ROS) but also enhanced levels of antioxidant defense molecules glutathione (GSH) and catalase (CAT) activity, which may account for the absence of cytotoxicity/mutagenicity in both cell lines. SN induced expression of the cAMP/PKA pathway genes ADCY3 and MAPK1 in MNP01 cells and MAPK1, GNAS, PRKACA, and PRKAR2A in Caco-2 cells, as well as modulated the transcription of genes related to cell proliferation (JUN; AKT1) and inflammation (RELA; TNF) in both cell lines. Therefore, the improved antioxidant state mitigated pro-oxidative effects attributed to SN. Evidence indicates that SN does not appear to exhibit adverse potential but modulated the cAMP/PKA pathway in human GI cell lines.


Assuntos
Fármacos Antiobesidade/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Sinefrina/efeitos adversos , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Homeostase , Humanos , Oxirredução/efeitos dos fármacos
2.
J Toxicol Environ Health A ; 80(19-21): 1098-1105, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28862539

RESUMO

Previous studies showed that lead (Pb) exposure may modulate gene expression by changes in the epigenetic status. However, little is known about the impact of Pb exposure and alterations on DNA methylation patterns in humans exposed to this metal. The aim of this study was to assess the consequences of exposure to Pb on DNA global methylation, in order to gain a better understanding of the interactions between Pb exposure and epigenetic effects. The study included 100 male workers employed in automotive battery factories from Paraná State, Brazil. Concentrations of Pb in blood (B-Pb) and plasma (P-Pb) were determined by ICP-MS, the percentage (%) of global DNA methylation was determined by quantification of 5-methylcytosine using indirect ELISA, and sociodemographic data collected by questionnaire by trained interviewers. The mean age was 37 ± 10 (18-67 years); 18% of participants were smokers, while 32% reported consumption of alcoholic beverages. The B-Pb and P-Pb levels were 20 ± 11 and 0.56 ± 0.64 µg/dl, respectively; % global DNA methylation was 2.8 ± 1.1% (ranging from 1.1 to 6.5%). B-Pb and P-Pb concentrations were significantly correlated. Furthermore, a marked association was noted between Pb biomarkers and DNA global methylation. Taken together, our data demonstrated that Pb exposure induced alterations on DNA global methylation in workers who were exposed to the metal and consequently may result in disturbances in the regulation of gene expression, leading to potentially several health adverse effect outcomes.


Assuntos
Metilação de DNA/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Epigênese Genética/efeitos dos fármacos , Chumbo/toxicidade , Exposição Ocupacional , 5-Metilcitosina/sangue , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Brasil , Estudos Transversais , Fontes de Energia Elétrica , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Environ Res ; 138: 224-32, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25728017

RESUMO

There have been reports of genetic effects affecting the metabolism of Hg and Pb individually, and thus modulating their toxicities. However, there is still a knowledge gap with respect to how genetics may influence the toxicities of these toxic metals during a co-exposure scenario. This present study is therefore aimed at investigating the effects of polymorphisms in genes (GSTM1, GSTT1, GSTP1, GCLM, GCLC, GPx1, ALAD, VDR and MDR1) that have been implicated in Hg and Pb metabolisms affects the kinetics of these metals, as well as various blood antioxidant status parameters: MDA and GSH, and the activities of CAT, GPx and ALAD among populations that have been co-exposed to both Hg and Pb. Study subjects (207 men; 188 women) were from an Amazonian population in Brazil, exposed to Hg and Pb from diet. The blood levels of Hg and Pb were determined by ICP-MS while genotyping were performed by PCR assays. The median values of Hg and Pb in blood were 39.8µg/L and 11.0µg/dL, respectively. GSTM1, ALAD and VDR polymorphisms influenced Hg in blood (ß=0.17; 0.37 and 0.17; respectively, p<0.050) while variations on GCLM, GSTT1 and MDR1 (TT) modulated the concentrations of Pb among the subjects (ß=-0.14; 0.13 and -0.22; re-spectively, p<0.050). GSTT1 and GCLM polymorphisms also are associated to changes of MDA concentrations. Persons with null GSTM1 genotype had higher activity of the antioxidant enzyme CAT than carries of the allele. Individuals with deletion of both GSTM1 and GSTT1 had a decreased expression of GPx compared to those that expressed at least, one of the enzymes. ALAD 1/2 subjects had lower ALAD activity than individuals with the non-variant genotype. Our findings give further support that polymorphisms related to Hg and Pb metabolism may modulate Hg and Pb body burden and, consequently metals-induced toxicity.


Assuntos
Antioxidantes/metabolismo , Exposição Ambiental , Poluentes Ambientais/farmacocinética , Chumbo/farmacocinética , Compostos de Metilmercúrio/farmacocinética , Polimorfismo Genético , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil , Estudos Transversais , Monitoramento Ambiental , Poluentes Ambientais/sangue , Feminino , Humanos , Chumbo/sangue , Masculino , Compostos de Metilmercúrio/sangue , Pessoa de Meia-Idade , Adulto Jovem
4.
Arch Environ Contam Toxicol ; 69(2): 173-80, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25690149

RESUMO

The aim of the present study was to evaluate possible effects of endothelial nitric oxide synthase (eNOS) polymorphisms on systolic (SBP) and diastolic blood pressure (DBP) and on nitrite levels in plasma (NitP) in a population coexposed to methylhemoglobin (MeHg) and lead (Pb) in the Amazonian region, Brazil. Plasmatic levels of hemoglobin Hg (HgP) and Pb (PbP) were determined by inductively coupled plasma-mass spectrometry, whereas NitP were quantified by chemiluminescence. Genotyping was performed by conventional and restriction fragment length polymorphism-polymerase chain reaction assay. The population age ranged from 18 to 87 years (mean 40 ± 16), and the distribution between the sexes was homogenous (63 men and 50 women). Mean HgP and PbP were 7.1 ± 6.1 and 1.1 ± 1.1 µg L(-1), respectively. PbP was correlated to SBP and DBP, whereas no effects were observed for HgP on blood pressure. Subjects carrying the 4b allele in intron 4 presented greater SBP and DBP compared with those who had the 4a4a genotype. In addition, interactions between alcohol consumption and the -786 T/C polymorphism were observed on NitP, i.e., individuals carrying the polymorphic allele and drinkers had lower NitP. Taken together, our data give new insights concerning the genetic effects of eNOS polymorphisms on biomarkers related to cardiovascular status in populations coexposed to Hg and Pb.


Assuntos
Pressão Sanguínea/genética , Poluentes Ambientais/toxicidade , Chumbo/toxicidade , Compostos de Metilmercúrio/toxicidade , Óxido Nítrico Sintase Tipo III/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Brasil/epidemiologia , Doenças Cardiovasculares/epidemiologia , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/metabolismo , Feminino , Humanos , Chumbo/metabolismo , Masculino , Compostos de Metilmercúrio/metabolismo , Pessoa de Meia-Idade , Nitritos/sangue , Adulto Jovem
5.
Artigo em Inglês | MEDLINE | ID: mdl-24246722

RESUMO

Bixin is a carotenoid found in the seeds of Bixa orellana L., a plant native to tropical America that is used in the food industry. The aim of this study was to investigate the effect of bixin on DNA damage and pre-neoplastic lesions induced by 1,2-dimethylhydrazine (DMH) in the liver and colon of Wistar rats. The animals received bixin at daily doses of 0.1, 1.0 and 10mg/kg body weight (bw) by gavage. For the assessment of DNA damage in hepatocytes and colon cells with the comet assay, the administration of bixin was for 7 days. The animals received a single subcutaneous injection of 25mg/kg bw of DMH, and were euthanized 4h later. For the evaluation of the frequency of aberrant crypt foci (ACF), the animals were treated with the different doses of bixin for 4 weeks. Four doses of 40mg/kg bw DMH, two doses in the first week and two doses in the second week, were administered and euthanasia occurred at 4 weeks after the beginning of treatment. Bixin reduced the frequency of DNA damage in hepatocytes at the highest two doses tested (1.0 and 10mg/kg bw). On the other hand, no differences in the frequency of DNA damage in colon cells were observed between animals treated with bixin plus DMH and those treated with DMH alone. In addition, the frequency of ACF did not differ significantly between the group treated with bixin plus DMH and the DMH group. The results suggest that bixin does not suppress the formation of ACF, indicating the absence of a protective effect against colon carcinogenesis.


Assuntos
1,2-Dimetilidrazina/toxicidade , Carotenoides/farmacologia , Neoplasias do Colo/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Lesões Pré-Cancerosas/induzido quimicamente , Animais , Neoplasias do Colo/prevenção & controle , Masculino , Lesões Pré-Cancerosas/prevenção & controle , Ratos , Ratos Wistar
6.
Bull Environ Contam Toxicol ; 93(3): 274-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24849712

RESUMO

Aquatic monitoring is an important tool for identifying potential compounds in rivers that may damage the environment. Here, we evaluate the potential genotoxic effects of water samples from São Francisco River (Brazil) using the micronuclei (MN) assay in resident species, Astyanax paranae. Four seasonal collections occurred between the years 2009 and 2010, at three locations between two nearby cities in the region. It was clearly observed an increase of MN frequency in fish caught in the river. This result is most likely due to the sewage contamination from the treatment plant, the waste pesticides from crops and the lack of riparian vegetation along the river, especially during the winter when there was a significant increase in the frequencies of MN. These results indicate that compounds in waters from São Francisco River may have genotoxic effects and consequently, cause damage to the environment as well as to human health.


Assuntos
Characidae , Dano ao DNA , Rios , Poluentes Químicos da Água/toxicidade , Poluição da Água/análise , Animais , Brasil , Characidae/genética , Cidades , Dano ao DNA/genética , Monitoramento Ambiental , Testes para Micronúcleos , Estações do Ano , Esgotos , Água
7.
Gene ; 907: 148252, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38350514

RESUMO

Epidemiological studies have shown the association of genetic variants with risks of occupational and environmentally induced cancers, including bladder (BC). The current review summarizes the effects of variants in genes encoding phase I and II enzymes in well-designed studies to highlight their contribution to BC susceptibility and prognosis. Polymorphisms in genes codifying drug-metabolizing proteins are of particular interest because of their involvement in the metabolism of exogenous genotoxic compounds, such as tobacco and agrochemicals. The prognosis between muscle-invasive and non-muscle-invasive diseases is very different, and it is difficult to predict which will progress worse. Web of Science, PubMed, and Medline were searched to identify studies published between January 1, 2010, and February 2023. We included 73 eligible studies, more than 300 polymorphisms, and 46 genes/loci. The most studied candidate genes/loci of phase I metabolism were CYP1B1, CYP1A1, CYP1A2, CYP3A4, CYP2D6, CYP2A6, CYP3E1, and ALDH2, and those in phase II were GSTM1, GSTT1, NAT2, GSTP1, GSTA1, GSTO1, and UGT1A1. We used the 46 genes to construct a network of proteins and to evaluate their biological functions based on the Reactome and KEGG databases. Lastly, we assessed their expression in different tissues, including normal bladder and BC samples. The drug-metabolizing pathway plays a relevant role in BC, and our review discusses a list of genes that could provide clues for further exploration of susceptibility and prognostic biomarkers.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias da Bexiga Urinária , Humanos , Glutationa Transferase/genética , Polimorfismo Genético , Citocromo P-450 CYP1A1/genética , Neoplasias da Bexiga Urinária/genética , Citocromo P-450 CYP2D6/genética , Predisposição Genética para Doença , Genótipo , Estudos de Casos e Controles , Fatores de Risco , Arilamina N-Acetiltransferase/genética , Aldeído-Desidrogenase Mitocondrial/genética
8.
J Toxicol Environ Health A ; 76(6): 345-53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23557233

RESUMO

The chemotherapeutic agent cisplatin (cDDP) is widely used to treat a variety of solid and hematological tumors. However, cDDP exerts severe side effects, such as nephrotoxicity, neurotoxicity, and bone-marrow suppression. The use of some dietary compounds to protect organs that are not targets in association with chemotherapy has been encouraged. This study evaluated the protective effects of chlorophyll b (CLb) on DNA damage induced by cDDP by use of single-cell gel electrophoresis (SCGE) assays. Further, this investigation also determined platinum (Pt) and magnesium (Mg) bioaccumulation in mice tissues after treatment with CLb alone and/or in association of cDDP (simultaneous treatment) by inductively coupled plasma-mass spectroscopy (ICP-MS). All parameters were studied in peripheral blood cells (PBC), kidneys, and liver of mice after administration of CLb (0.2 or 0.5 mg/kg of body weight [b.w.]), cDDP (6 mg/kg b.w.), and the combination CLb 0.2 plus cDDP or CLb 0.5 plus cDDP. Pt accumulation in liver and kidneys was higher than that found in PBC, while DNA damage was higher in kidneys and liver than in PBC. Further, treatment with CLb alone did not induce DNA damage. Evidence indicates that genotoxic effects produced by cDDP may not be related to Pt accumulation and distribution. In combined treatments, CLb decreased DNA damage in tissues, but the PT contents did not change and these treatments also showed that CLb may be an important source of Mg. Thus, our results indicate that consumption of CLb-rich foods may diminish the adverse health effects induced by cDDP exposure.


Assuntos
Antimutagênicos/farmacologia , Antineoplásicos/toxicidade , Clorofila/farmacologia , Cisplatino/toxicidade , Dano ao DNA/efeitos dos fármacos , Animais , Antineoplásicos/farmacocinética , Cisplatino/farmacocinética , Ensaio Cometa , Feminino , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Compostos de Magnésio/metabolismo , Masculino , Camundongos , Compostos de Platina/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-36834208

RESUMO

Occupational exposure to lead (Pb) continues to be a serious public health concern and may pose an elevated risk of genetic oxidative damage. In Brazil, car battery manufacturing and recycling factories represent a great source of Pb contamination, and there are no guidelines on how to properly protect workers from exposure or to dispose the process wastes. Previous studies have shown that Pb body burden is associated with genetic polymorphisms, which consequently may influence the toxicity of the metal. The aim of this study was to assess the impact of Pb exposure on DNA oxidative damage, as well as the modulation of hemochromatosis (HFE) polymorphisms on Pb body burden, and the toxicity of Pb, through the analysis of 8-hydroxy-2'-deoxyguanosine (8-OHdG), in subjects occupationally exposed to the metal. Male Pb-exposed workers (n = 236) from car battery manufacturing and recycling factories in Brazil participated in the study. Blood and plasma lead levels (BLL and PLL, respectively) were determined by ICP-MS and urinary 8-OHdG levels were measured by LC-MS/MS, and genotyping of HFE SNPs (rs1799945, C → G; and 1800562, G → A) was performed by TaqMan assays. Our data showed that carriers of at least one variant allele for HFE rs1799945 (CG + GG) tended to have higher PLL than those with the non-variant genotype (ß = 0.34; p = 0.043); further, PLL was significantly correlated with the levels of urinary 8-OHdG (ß = 0.19; p = 0.0060), while workers that carry the variant genotype for HFE rs1800562 (A-allele) showed a prominent increase in 8-OHdG, as a function of PLL (ß = 0.78; p = 0.046). Taken together, our data suggest that HFE polymorphisms may modulate the Pb body burden and, consequently, the oxidative DNA damage induced by the metal.


Assuntos
Hemocromatose , Chumbo , Humanos , Masculino , Hemocromatose/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Genótipo , Polimorfismo de Nucleotídeo Único , Estresse Oxidativo , 8-Hidroxi-2'-Desoxiguanosina , Dano ao DNA , Proteína da Hemocromatose/genética
10.
Chemosphere ; 334: 138897, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37182709

RESUMO

Although the mechanisms of Pb-induced genotoxicity are well established, a wide individual's variation response is seen in biomarkers related to Pb toxicity, despite similar levels of metal exposure. This may be related to intrinsic variations, such as genetic polymorphisms; moreover, very little is known about the impact of genetic variations related to DNA repair system on DNA instability induced by Pb. In this context, the present study aimed to assess the impact of SNPs in enzymes related to DNA repair system on biomarkers related to acute toxicity and DNA damage induced by Pb exposure, in individuals occupationally exposed to the metal. A cross-sectional study was run with 154 adults (males, >18 years) from an automotive batteries' factory, in Brazil. Blood lead levels (BLL) were determined by ICP-MS; biomarkers related to acute toxicity and DNA instability were monitored by the buccal micronucleus cytome (BMNCyt) assay and genotyping of polymorphisms of MLH1 (rs1799977), OGG1 (rs1052133), PARP1 (rs1136410), XPA (rs1800975), XPC (rs2228000) and XRCC1 (rs25487) were performed by TaqMan assays. BLL ranged from 2.0 to 51 µg dL-1 (mean 20 ± 12 µg dL-1) and significant associations between BLL and BMNCyt biomarkers related to cellular proliferation and cytokinetic, cell death and DNA damage were observed. Furthermore, SNPs from the OGG1,XPA and XPC genes were able to modulate interactions in nuclear bud formation (NBUDs) and micronucleus (MNi) events. Taken together, our data provide further evidence that polymorphisms related to DNA repair pathways may modulate Pb-induced DNA damage; studies that investigate the association between injuries to genetic material and susceptibilities in the workplace can provide additional information on the etiology of diseases and the determination of environmentally responsive genes.


Assuntos
Chumbo , Exposição Ocupacional , Adulto , Masculino , Humanos , Chumbo/toxicidade , Estudos Transversais , Exposição Ocupacional/efeitos adversos , Reparo do DNA , Polimorfismo de Nucleotídeo Único , Dano ao DNA , Biomarcadores , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
11.
Mutat Res ; 726(2): 109-15, 2011 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-21820078

RESUMO

Aim of this study was to investigate the cytotoxic and genotoxic properties of inorganic and organic mercury compounds, i.e., HgCl(2) and methylmercury (MeHg). In addition, the DNA-protective and antioxidant effects of the flavonoid quercetin (QC) were studied. All experiments were conducted with human-derived liver cells (HepG2), which possess antioxidant and drug-metabolizing enzymes in an inducible form. 8-Hydroxydeoxyguanosine (8-OHdG) and comet formation were monitored as endpoints of DNA damage. The impact of the metal compounds on the redox status was also investigated, since it is assumed that their toxic effects are due to oxidative damage. A number of biochemical parameters related to oxidative stress, namely glutathione, malondialdehyde, protein carbonyl and formation of reactive oxygen species (ROS) were measured after treatment of the cells with the mercury compounds in the presence and absence of quercetin. To elucidate the mechanisms that underlie the effects of QC, three protocols (pre-, simultaneous and post-treatment) were used. Both mercury compounds (range 0.1-5.0µM) caused induction of DNA migration and formation of 8-OHdG. In combination with the flavonoid (range 0.1-5.0µM), DNA-protective effects of QC were observed after pre- and simultaneous treatment but not when the flavonoid was added after treatment with the metal compounds. Exposure to the metal compounds led also to substantial changes of all parameters of the redox status and co-treatment experiments with QC showed that these alterations are reversed by the flavonoid. Taken together, the results of our experiments indicate that these two mercury compounds cause DNA damage and oxidative stress in human-derived liver cells and that the flavonoid reduces these effects. Since the concentrations of the metals and of the flavonoids used in the present work reflect human exposure, our findings can be taken as an indication that QC may protect humans against the adverse effects caused by the metal.


Assuntos
Antimutagênicos/farmacologia , Antioxidantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Cloreto de Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Oxirredução/efeitos dos fármacos , Quercetina/farmacologia , 8-Hidroxi-2'-Desoxiguanosina , Sobrevivência Celular , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análise , Células Hep G2 , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
12.
Arch Toxicol ; 85(9): 1151-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21286687

RESUMO

Aim of the study was to find out whether consumption of quercetin (QC), an abundant flavonoid in the human diet, protects against DNA damage caused by exposure to organic mercury. Therefore, rats were treated orally with methylmercury (MeHg) and the flavonoid with doses that reflect the human exposure. The animals received MeHg (30 µg/kg/bw/day), QC (0.5-50 mg/kg/bw/day), or combinations of both over 45 days. Subsequently, the glutathione levels (GSH) and the activities of glutathione peroxidase (GPx) and catalase (CAT) were determined, and DNA damage was measured in hepatocytes and peripheral leukocytes in single cell gel electrophoresis assays. MeHg decreased the concentration of GSH and the activity of GPx by 17 and 12%, respectively and caused DNA damage to liver and blood cells, while with QC no such effects were seen. When the flavonoid was given in combination with MeHg, the intermediate and the highest concentrations (5.0 and 50.0 mg/kg/bw/day) were found to cause DNA protection; DNA migration was reduced by 54 and 65% in the hepatocytes and by 27 and 36% in the leukocytes; furthermore, the reduction in GSH and GPx levels caused by MeHg treatment was restored. In summary, our results indicate that consumption of QC-rich foods may protect Hg-exposed humans against the adverse health effects of the metal.


Assuntos
Antioxidantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Animais , Catalase/metabolismo , Ensaio Cometa , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/enzimologia , Leucócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Compostos de Metilmercúrio/sangue , Compostos de Metilmercúrio/farmacocinética , Mutagênicos/farmacocinética , Ratos , Ratos Wistar
13.
Ecotoxicol Environ Saf ; 74(3): 487-93, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20970192

RESUMO

The present study evaluates a possible protective effect of fish oil against oxidative damage promoted by methylmercury (MeHg) in sub-chronically exposed rats. Reduced glutathione peroxidase and catalase enzyme activity and reduced glutathione levels were observed in MeHg-exposed animals compared to controls. Methylmercury exposure was also associated with DNA damage. Administration of fish oil to the methylmercury-exposed animals did not ameliorate enzyme activity or glutathione levels. On the other hand, a significant DNA protective effect (about 30%) was observed with fish oil treatment. There were no differences in the total mercury concentration in rat liver, kidney, heart or brain after MeHg administration with or without fish oil co-administration. Histopathological analyses showed a significant leukocyte infiltration in rat tissues after MeHg exposure, but this effect was significantly reduced after co-administration of fish oil. Taken together, our findings demonstrate oxidative damage even after low-level MeHg exposure and the protective effect of fish oil. This protection seems not to be related to antioxidant defenses or mercury re-distribution in rat tissues. It is probably due to the anti-inflammatory effects of fish oil.


Assuntos
Antioxidantes/farmacologia , Óleos de Peixe/farmacologia , Compostos de Metilmercúrio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Catalase/metabolismo , Dano ao DNA/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Mercúrio/metabolismo , Mercúrio/toxicidade , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Ratos Wistar
14.
Front Genet ; 12: 649845, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959150

RESUMO

Triclosan (TCS) is an antimicrobial agent widely used in personal care products (PCP) and the di-(2-ethyl hydroxy-phthalate) (DEHP) is a chemical compound derived from phthalic acid, used in medical devices and plastic products with polyvinyl chloride (PVCs). As result of their extensive use, TCS and DEHP have been found in the environment and previous studies demonstrated the association between their exposure and toxic effects, mostly in aquatic organisms, but there is a shortage in the literature concerning the exposure of TCS and DEHP in human cells. The aim of the present study was to assess the impact of exposure to TCS and DEHP, as well as their combinations, on biomarkers related to acute toxicity and DNA instability, in HepG2 cells, by use of cytokinesis-block micronucleus cytome (CBMNCyt) assay. For that, the cultures were exposed to TCS, DEHP and combinations at doses of 0.10, 1.0, and 10 µM for the period of 4 h and the parameters related to DNA damage (i.e., frequencies of micronuclei (MN) and nuclear buds (NBUDs), to cell division (i.e., nuclear division index (NDI) and nuclear division cytotoxic index (NDCI) and to cell death (apoptotic and necrotic cells) were scored. Clear mutagenic effects were seen in cells treated with TCS, DEHP at doses of 1.0 and 10 µM, but no combined effects were observed when the cells were exposed to the combinations of TCS + DEHP. On the other hand, the combination of the toxicants significantly increased the frequencies of apoptotic and necrotic cells, as well as induced alterations of biomarkers related to cell viability (NDI and NDCI), when compared to the groups treated only with TCS or DEHP. Taken together, the results showed that TCS and DEHP are also able to induce acute toxicity and DNA damage in human cells.

15.
Chemosphere ; 269: 128758, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33143897

RESUMO

It is well known that one of the most outstanding adverse effects related to lead (Pb) exposure is oxidative stress; moreover, recent findings suggest that disturbances of the redox status of cells are associated with epigenetic responses, and metabolism of glutathione (GSH) plays an important role in this process. This study aimed to assess Pb exposure on % methylation of GSH-related genes' promoter regions (%CH3-CpG) and their influence on biomarkers of oxidative stress, in workers exposed to the metal. One hundred nine male workers participated in the study; ICP-MS determined blood lead levels (BLL); biochemical parameters related to redox status, named GSH, glutathione peroxidase (GPX) and glutathione-S-transferase (GST) were quantified by UV/Vis spectrophotometry. Determination of %CH3-CpG of genes GCLC, GPX1, GSR, and GSTP1 were done by pyrosequencing. Inverse associations were seen between BLL and %CH3-CpG-GCLC, and %CH3-CpG-GSTP1. Moreover, metal exposure did not impact GSH, GPX, and GST; however, negative associations were observed between %CH3-CpG-GPX1 and %CH3-CpG-GSTP1, and the activities of GPX and GST, respectively. Taken together, our results give further evidence about adaptive epigenetic response to avoid oxidative damage induced by Pb exposure, allowing a better understanding of the molecular mechanisms related to the metal toxicity.


Assuntos
Glutationa , Chumbo , Epigênese Genética , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Chumbo/toxicidade , Masculino , Estresse Oxidativo/genética
16.
Front Genet ; 12: 620744, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679885

RESUMO

Experimental and epidemiologic studies have shown that lead (Pb) is able to induce epigenetic modifications, such as changes in DNA methylation profiles, in chromatin remodeling, as well as the expression of non-coding RNAs (ncRNAs). However, very little is known about the interactions between microRNAs (miRNAs) expression and DNA methylation status in individuals exposed to the metal. The aim of the present study was to investigate the impact of hsa-miR-148a expression on DNA methylation status, in 85 workers exposed to Pb. Blood and plasma lead levels (BLL and PLL, respectively) were determined by ICP-MS; expression of the miRNA-148a was quantified by RT-qPCR (TaqMan assay) and assessment of the global DNA methylation profile (by measurement of 5-methylcytosine; % 5-mC) was performed by ELISA. An inverse association was seen between miR-148a and % 5-mC DNA, as a function of BLL and PLL (ß = -3.7; p = 0.071 and ß = -4.1; p = 0.049, respectively) adjusted for age, BMI, smoking, and alcohol consumption. Taken together, our study provides further evidence concerning the interactions between DNA methylation profile and miR-148a, in individuals exposed to Pb.

17.
Mutagenesis ; 25(3): 223-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20032005

RESUMO

Silybin (SB), a constituent of the medicinal plant Silybum marianum, is reported to be a potent hepatoprotective agent, but little is currently known regarding its genotoxicity, mutagenicity and potential chemopreventive properties. In this study, we evaluated the ability of SB to induce DNA migration and micronuclei (MN) formation in human hepatoma cells (HepG2). Also, possible preventive effects of SB on MN formation induced by three different mutagens, bleomycin (BLEO), benzo[a]pyrene (B[a]P) and aflatoxin B(1) (AFB(1)), were studied. To clarify the possible mechanism of SB antimutagenicity, three treatment protocols were applied: pretreatment, in which SB was added before the application of the mutagens; simultaneous treatment, in which SB was added during treatment and post-treatment, in which SB was added after the application of the mutagens. At concentrations up to 100 microM, SB was non-genotoxic, while at a concentration of 200 microM, SB induced DNA migration, generated oxidized DNA bases, reduced cell viability, decreased the replicative index of the cells and induced oxidative stress. It is noteworthy that SB was able to reduce the genotoxic effect induced by B[a]P, BLEO and AFB(1) in pretreatment and simultaneous treatments but had no significant effect on DNA damage induction in post-treatment. Taken together, our findings indicate that SB presents anti-genotoxic activity in vitro, which suggests potential use as a chemopreventive agent.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Mutagênicos/toxicidade , Silimarina/toxicidade , Aflatoxina B1/toxicidade , Benzo(a)pireno/toxicidade , Bleomicina/toxicidade , Morte Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , DNA/metabolismo , Dano ao DNA , DNA-Formamidopirimidina Glicosilase/metabolismo , Endonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Mutagênicos/química , Espécies Reativas de Oxigênio/metabolismo , Silibina , Silimarina/química
18.
Nat Prod Res ; 34(17): 2528-2532, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30623721

RESUMO

Copaifera langsdorffii L. is one of the most known medicinal species in Brazil. Its leaves are rich in phenolic compounds with potential biological activities as an antioxidant and chelating agent. This paper reports the isolation of four compounds from the hydroalcoholic extract of the leaves of C. langsdorffii and the investigation of their possible cytoprotective effects against heavy metal poisoning. Quercitrin (1), afzelin (2), 3,5-di-O-(3-O-methyl galloyl) quinic acid (3) and 4,5-di-O-(3-O-methyl galloyl) quinic acid (4), were associated with toxic doses of methylmercury and lead and evaluated by Alamar blue cell viability assays in HepG2 and PC12. The compounds displayed significant cytoprotective effect for the HepG2 cell line against both metals. Compounds 1-4 did not protect PC12 cells against methylmercury induced-cytotoxicity, but at lower concentrations, they protected against lead induced-cytotoxicity. The evaluated compounds showed a promising cytoprotection effect against exposure to heavy metals and should be further investigated as protective agents.


Assuntos
Fabaceae/química , Intoxicação por Metais Pesados/tratamento farmacológico , Compostos de Metilmercúrio/antagonistas & inibidores , Extratos Vegetais/farmacologia , Substâncias Protetoras/isolamento & purificação , Animais , Antioxidantes , Brasil , Linhagem Celular , Intoxicação por Metais Pesados/prevenção & controle , Humanos , Chumbo/toxicidade , Intoxicação por Chumbo/tratamento farmacológico , Intoxicação por Chumbo/prevenção & controle , Manosídeos , Intoxicação por Mercúrio/tratamento farmacológico , Intoxicação por Mercúrio/prevenção & controle , Compostos de Metilmercúrio/toxicidade , Fenóis , Folhas de Planta/química , Proantocianidinas , Substâncias Protetoras/farmacologia , Quercetina/análogos & derivados , Ácido Quínico , Ratos
19.
Toxicology ; 422: 25-34, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004705

RESUMO

Thermogenic supplements containing synephrine (SN) are widely used to weight loss. SN is a proto-alkaloid naturally found in the bark of immature fruits of Citrus aurantium (bitter orange) that has been added to thermogenic supplements due to its chemical and pharmacological similarity with adrenergic amines, such as ephedrine and amphetamines. Although orally ingested SN is mainly metabolized in the liver, it remains unclear whether it affects the redox status and genetic material of human hepatic cells. The present study aims to examine whether SN affects cell viability, cell cycle, redox balance, genomic stability, and expression of the DNA damage response (DDR)-related genes ATM, ATR, CHEK1, CHECK2, TP53, and SIRT1 in HepG2 cells - used as in vitro hepatocyte model. SN induced overproduction of intracellular reactive oxygen species (ROS) after 6 h of treatment with the three concentrations tested (2, 20 and 200 µM). After 24 h of treatment, SN at 200 µM induced intracellular ROS overproduction and exerted cytostatic effects, while SN at 20 and 200 µM increased the levels of GPx and GSH. SN was not cytotoxic (2-5000 µM), genotoxic, and mutagenic and did not alter the expression of DDR-related genes (2-200 µM), indicating that the fast/specific SN metabolization and upregulation of antioxidant defense components to detoxify intracellular ROS were sufficient to prevent intracellular damage in HepG2 cells. In conclusion, SN showed no cytotoxic, genotoxic, and mutagenic potential at relevant concentrations for thermogenic users in human hepatic cells in vitro, although, it plays pro-oxidative action, and cytostatic effects. Taken together, our results suggest that other investigations about the hazard absence of this thermogenic compound should be performed.


Assuntos
Citotoxinas/toxicidade , Suplementos Nutricionais/efeitos adversos , Oxidantes/toxicidade , Sinefrina/toxicidade , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo
20.
Mutat Res Genet Toxicol Environ Mutagen ; 836(Pt B): 42-46, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30442344

RESUMO

Individual susceptibility to the toxic effects induced by exposure to lead (Pb) may be affected by several variables, such as environmental factors, as well as intrinsic variations among the individuals, which are hypothetically associated to genetic differences in enzymes metabolizing the metal. Aim of the present study was to evaluate the effects of polymorphisms of glutathione (GSH)-genes related to the antioxidant status and Pb metabolism (GCLC, rs17883901 and GCLM, rs41303970) on Pb levels in blood (B-Pb) and plasma (P-Pb), as well as Pb-related effects on activity of glutathione-peroxidase (GPX) and on GSH concentrations. A cross-sectional study with 236 adults (men, >18 years old) was carried out with workers from automotive battery factories, Brazil. B-Pb and P-Pb were determined by ICP-MS; blood GPX and GSH were determined by spectrophotometry and qPCR TaqMan assays were used for genotyping. A questionnaire was applied in order to collect socio-demographic, lifestyle and time of exposure. The mean B-Pb level was 211 ±â€¯118 µg/L and P-Pb was 6.05 ±â€¯7.13 µg/L. GCLM are associated with changes of B-Pb and P-Pb; individuals who carry at least one polymorphic allele for GCLM gene had lower metal levels in the blood and plasma (ß = -1.5; p = 0.0080; ß = -0.12 and p = 0.050). In addition, individuals carrying at least one polymorphic allele for the GCLC gene had higher concentrations of GSH than the non-polymorphic ones, as a function of B-Pb (ß = 0.072; p = 0.029). Significant associations were also observed with GCLC polymorphism on GSH concentrations (as a function of P-Pb), that is, polymorphic individuals tended to have higher concentrations of GSH than non-polymorphic ones (ß = 0.072; p = 0.030), while those individuals who are polymorphic for GCLM had higher activities of GPX, compared to the non-variant genotype (ß = 0.19; p = 0.028). Taken together, our data indicate that polymorphisms related to Pb toxicokinetics modify the metal body burden and Pb-related antioxidant effects.


Assuntos
Biomarcadores/análise , Exposição Ambiental/efeitos adversos , Glutamato-Cisteína Ligase/genética , Chumbo/metabolismo , Exposição Ocupacional/efeitos adversos , Polimorfismo Genético , Adolescente , Adulto , Idoso , Carga Corporal (Radioterapia) , Brasil , Estudos Transversais , Genótipo , Humanos , Chumbo/efeitos adversos , Chumbo/análise , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa