Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biochem Soc Trans ; 49(5): 2253-2269, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34709394

RESUMO

Interest in nanomedicines has grown rapidly over the past two decades, owing to the promising therapeutic applications they may provide, particularly for the treatment of cancer. Personalised medicine and 'smart' actively targeted nanoparticles represent an opportunity to deliver therapies directly to cancer cells and provide sustained drug release, in turn providing overall lower off-target toxicity and increased therapeutic efficacy. However, the successful translation of nanomedicines from encouraging pre-clinical findings to the clinic has, to date, proven arduous. In this review, we will discuss the use of nanomedicines for the treatment of cancer, with a specific focus on the use of polymeric and lipid nanoparticle delivery systems. In particular, we examine approaches exploring the surface functionalisation of nanomedicines to elicit active targeting and therapeutic effects as well as challenges and future directions for nanoparticles in cancer treatment.


Assuntos
Antineoplásicos/uso terapêutico , Nanomedicina , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos
2.
Biochem Soc Trans ; 46(6): 1559-1565, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30381336

RESUMO

Therapeutic mAbs have delivered several blockbuster drugs in oncology and autoimmune inflammatory disease. Revenue for mAbs continues to rise, even in the face of competition from a growing portfolio of biosimilars. Despite this success, there are still limitations associated with the use of mAbs as therapeutic molecules. With a molecular mass of 150 kDa, a two-chain structure and complex glycosylation these challenges include a high cost of goods, limited delivery options, and poor solid tumour penetration. There remains an urgency to create alternatives to antibody scaffolds in a bid to circumvent these limitations, while maintaining or improving the therapeutic success of conventional mAb formats. Smaller, less complex binders, with increased domain valency, multi-specific/paratopic targeting, tuneable serum half-life and low inherent immunogenicity are a few of the characteristics being explored by the next generation of biologic molecules. One novel 'antibody-like' binder that has naturally evolved over 450 million years is the variable new antigen receptor (VNAR) identified as a key component of the adaptive immune system of sharks. At only 11 kDa, these single-domain structures are the smallest IgG-like proteins in the animal kingdom and provide an excellent platform for molecular engineering and biologics drug discovery. VNAR attributes include high affinity for target, ease of expression, stability, solubility, multi-specificity, and increased potential for solid tissue penetration. This review article documents the recent drug developmental milestones achieved for therapeutic VNARs and highlights the first reported evidence of the efficacy of these domains in clinically relevant models of disease.


Assuntos
Receptores de Antígenos/química , Receptores de Antígenos/metabolismo , Animais , Medicamentos Biossimilares , Glicosilação , Humanos , Solubilidade
3.
J Biol Chem ; 288(24): 17408-19, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23632026

RESUMO

The immunoglobulin new antigen receptors (IgNARs) are a class of Ig-like molecules of the shark immune system that exist as heavy chain-only homodimers and bind antigens by their single domain variable regions (V-NARs). Following shark immunization and/or in vitro selection, V-NARs can be generated as soluble, stable, and specific high affinity monomeric binding proteins of ∼12 kDa. We have previously isolated a V-NAR from an immunized spiny dogfish shark, named E06, that binds specifically and with high affinity to human, mouse, and rat serum albumins. Humanization of E06 was carried out by converting over 60% of non-complementarity-determining region residues to those of a human germ line Vκ1 sequence, DPK9. The resulting huE06 molecules have largely retained the specificity and affinity of antigen binding of the parental V-NAR. Crystal structures of the shark E06 and its humanized variant (huE06 v1.1) in complex with human serum albumin (HSA) were determined at 3- and 2.3-Å resolution, respectively. The huE06 v1.1 molecule retained all but one amino acid residues involved in the binding site for HSA. Structural analysis of these V-NARs has revealed an unusual variable domain-antigen interaction. E06 interacts with HSA in an atypical mode that utilizes extensive framework contacts in addition to complementarity-determining regions that has not been seen previously in V-NARs. On the basis of the structure, the roles of various elements of the molecule are described with respect to antigen binding and V-NAR stability. This information broadens the general understanding of antigen recognition and provides a framework for further design and humanization of shark IgNARs.


Assuntos
Anticorpos Monoclonais Humanizados/química , Tubarões/imunologia , Anticorpos de Cadeia Única/química , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , Proteínas de Peixes , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Engenharia de Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Ratos , Homologia de Sequência de Aminoácidos , Albumina Sérica/química
4.
RSC Adv ; 13(48): 33721-33735, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38020041

RESUMO

Intracellular delivery of proteins, peptides and biologics is an emerging field which has the potential to provide novel opportunities to target intracellular proteins, previously deemed 'undruggable'. However, the delivery of proteins intracellularly remains a challenge. Here, we present a cationic nanoparticle delivery system for enhanced cellular delivery of proteins through use of a polyethyleneimine and poly-(lactic-co-glycolic acid) polymer blend. Cationic nanoparticles were shown to provide increased cellular uptake compared to anionic and neutral nanoparticles, successfully delivering Variable New Antigen Receptors (vNARs), entrapped within the nanoparticle core, to the cell interior. vNARs were identified as ideal candidates for nanoparticle entrapment due to their remarkable stability. The optimised 10% PEI-PLGA nanoparticle formulation displayed low toxicity, was uniform in size and possessed appropriate cationic charge to limit cellular toxicity, whilst being capable of escaping the endo/lysosomal system and delivering their cargo to the cytosol. This work demonstrates the ability of cationic nanoparticles to facilitate intracellular delivery of vNARs, novel biologic agents with potential utility towards intracellular targets.

5.
Methods Mol Biol ; 2446: 19-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35157267

RESUMO

The approval of the first VHH-based drug caplacizumab (anti-von Willebrand factor) has validated a two-decade long commitment in time and research effort to realize the clinical potential of single-domain antibodies. The variable domain (VNAR) of the immunoglobulin new antigen receptor (IgNAR) found in sharks provides an alternative small binding domain to conventional monoclonal antibodies and their fragments and heavy-chain antibody-derived VHHs. Evolutionarily distinct from mammalian antibody variable domains, VNARs have enhanced thermostability and unusual convex paratopes. This predisposition to bind cryptic and recessed epitopes has facilitated both the targeting of new antigens and new (neutralizing) epitopes on existing antigens. Together these unique properties position the VNAR platform as an alternative non-antibody binding domain for therapeutic drug, diagnostic and reagent development. In this introductory chapter, we highlight recent VNAR advancements that further underline the exciting potential of this discovery platform.


Assuntos
Preparações Farmacêuticas , Tubarões , Animais , Antígenos , Cadeias Pesadas de Imunoglobulinas/química , Receptores de Antígenos/química
6.
Nat Commun ; 12(1): 7325, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916516

RESUMO

Single-domain Variable New Antigen Receptors (VNARs) from the immune system of sharks are the smallest naturally occurring binding domains found in nature. Possessing flexible paratopes that can recognize protein motifs inaccessible to classical antibodies, VNARs have yet to be exploited for the development of SARS-CoV-2 therapeutics. Here, we detail the identification of a series of VNARs from a VNAR phage display library screened against the SARS-CoV-2 receptor binding domain (RBD). The ability of the VNARs to neutralize pseudotype and authentic live SARS-CoV-2 virus rivalled or exceeded that of full-length immunoglobulins and other single-domain antibodies. Crystallographic analysis of two VNARs found that they recognized separate epitopes on the RBD and had distinctly different mechanisms of virus neutralization unique to VNARs. Structural and biochemical data suggest that VNARs would be effective therapeutic agents against emerging SARS-CoV-2 mutants, including the Delta variant, and coronaviruses across multiple phylogenetic lineages. This study highlights the utility of VNARs as effective therapeutics against coronaviruses and may serve as a critical milestone for nearing a paradigm shift of the greater biologic landscape.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Cristalografia por Raios X , Receptores de Antígenos/química , Receptores de Antígenos/imunologia , Tubarões/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Epitopos , Mutação , Filogenia , Ligação Proteica , SARS-CoV-2 , Alinhamento de Sequência , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus/imunologia
7.
J Immunol Res ; 2020: 7283239, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32090129

RESUMO

Anti-drug antibodies (ADAs), specific for biotherapeutic drugs, are associated with reduced serum drug levels and compromised therapeutic response. The impact of ADA on the bioavailability and clinical efficacy of blockbuster anti-hTNF-α monoclonal antibodies is well recognised, especially for adalimumab and infliximab treatments, with the large and complex molecular architecture of classical immunoglobulin antibody drugs, in part, responsible for the immunogenicity seen in patients. The initial aim of this study was to develop solid-phase enzyme-linked immunosorbent assays (ELISA) and an in vitro cell-based method to accurately detect ADA and estimate its impact on the preclinical in vivo efficacy outcomes of two novel, nonimmunoglobulin VNAR fusion anti-hTNF-α biologics (Quad-X™ and D1-NDure™-C4) and Humira®, a brand of adalimumab. Serum drug levels and the presence of ADA were determined in a transgenic mouse model of polyarthritis (Tg197) when Quad-X™ and Humira® were dosed at 1 mg/kg and D1-NDure™-C4 was dosed at 30 mg/kg. The serum levels of the Quad-X™ and D1-NDure™-C4 modalities were consistently high and comparable across all mice within the same treatment groups. In 1 mg/kg and 3 mg/kg Quad-X™- and 30 mg/kg D1-NDure™-C4-treated mice, an average trough drug serum concentration of 8 µg/mL, 50 µg/mL, and 350 µg/mL, respectively, were estimated. In stark contrast, Humira® trough serum concentrations in the 1 mg/kg treatment group ranged from <0.008 µg/mL to 4 µg/mL with trace levels detected in 7 of the 8 animals treated. Trough serum Humira® and Quad-X™ concentrations in 3 mg/kg treatment samples were comparable; however, the functionality of the detected Humira® serum was significantly compromised due to neutralising ADA. The impact of ADA went beyond the simple and rapid clearance of Humira®, as 7/8 serum samples also showed no detectable capacity to neutralise hTNF-α-mediated cytotoxicity in a murine fibrosarcoma (L929) cell assay. The neutralisation capacity of all the VNAR constructs remained unchanged at the end of the experimental period (10 weeks). The data presented in this manuscript goes some way to explain the exciting outcomes of the previously published preclinical in vivo efficacy data, which showed complete control of disease at Quad-X™ concentrations of 0.5 mg/kg, equivalent to 10x the in vivo potency of Humira®. This independent corroboration also validates the robustness and reliability of the assay techniques reported in this current manuscript, and while it comes with the caveat of a mouse study, it does appear to suggest that these particular VNAR constructs, at least, are of low inherent immunogenicity.


Assuntos
Antirreumáticos/administração & dosagem , Artrite Reumatoide/imunologia , Artrite Reumatoide/terapia , Produtos Biológicos/administração & dosagem , Imunoconjugados/administração & dosagem , Animais , Anticorpos/imunologia , Antirreumáticos/efeitos adversos , Artrite Reumatoide/diagnóstico , Bioensaio , Produtos Biológicos/efeitos adversos , Biomarcadores , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoconjugados/efeitos adversos , Camundongos , Resultado do Tratamento
8.
Methods Mol Biol ; 2070: 115-142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31625093

RESUMO

VNAR domains are the binding regions of new antigen receptor proteins (IgNAR) which are unique to sharks, skates, and rays (Elasmobranchii). Individual VNAR domains can bind antigens independently and are the smallest reported adaptive immune recognition entities in the vertebrate kingdom. Sharing limited sequence homology with human immunoglobulin domains, their development and use as biotherapeutic agents require that they be humanized to minimize their potential immunogenicity. Efforts to humanize a human serum albumin (HSA)-specific VNAR, E06, resulted in protein molecules that initially had undesirable biophysical properties or reduced affinity for cognate antigen. Two lead humanized anti-HSA clones, v1.10 and v2.4, were subjected to a process of random mutagenesis using error-prone PCR. The mutated sequences for each humanized VNAR variant were screened for improvements in affinity for HSA and biophysical properties, achieved without a predicted increase in overall immunogenicity.


Assuntos
Proteínas de Peixes , Mutagênese , Engenharia de Proteínas , Receptores de Antígenos , Tubarões/genética , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Humanos , Reação em Cadeia da Polimerase , Receptores de Antígenos/química , Receptores de Antígenos/genética , Albumina Sérica Humana/química
9.
Nanoscale ; 12(27): 14751-14763, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32626858

RESUMO

Whilst there is an extensive body of preclinical nanomedicine research, translation to clinical settings has been slow. Here we present a novel approach to the targeted nanoparticle (NP) concept: utilizing both a novel targeting ligand, VNAR (Variable New Antigen Receptor), a shark-derived single chain binding domain, and an under-investigated target in delta-like ligand 4 (DLL4). We describe the development of an anti-DLL4 VNAR and the site-specific conjugation of this to poly(lactic-co-glycolic) acid PEGylated NPs using surface maleimide functional groups. These nanoconjugates were shown to specifically bind DLL4 with high affinity and were preferentially internalized by DLL4-expressing pancreatic cancer cell lines and endothelial cells. Furthermore, a distinct anti-angiogenic effect endowed by the anti-DLL4 VNAR was evident in in vitro tubulogenic assays. Taken together these findings highlight the potential of anti-DLL4 targeted polymeric NPs as a novel therapeutic approach in pancreatic cancer.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Inibidores da Angiogênese , Células Endoteliais , Humanos , Nanoconjugados , Nanomedicina , Neoplasias Pancreáticas/tratamento farmacológico
10.
Front Immunol ; 10: 526, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967865

RESUMO

Tumor necrosis factor-alpha (TNF-α), an established pro-inflammatory cytokine plays a central role in the induction and progression of several chronic inflammatory and autoimmune diseases. Targeting TNF-α as a treatment modality has shown tremendous success, however there are several limitations associated with the current anti-TNF-α biologic drugs including: immunogenicity, life-threatening infections, resistance to treatment, complexity of manufacture and cost of treatment. Here, we report the in vivo efficacy of novel anti-TNF-α formats generated from molecular engineering of variable new antigen receptors (VNARs), originally derived from the immune system of an immunized nurse shark. Two anti-TNF-α VNAR formats, a tandem multivalent trimer, D1-BA11-C4 and an Fc-fused quadrivalent D1-Fc-C4 (Quad-X™) construct were tested in a clinically relevant, preclinical mouse efficacy model of polyarthritis (Tg197) and compared to the commercial anti-TNF-α "best in class" therapy, Adalimumab (Humira®). Both VNAR formats bind and neutralize TNF-α through an epitope that appears to be different from those recognized by other anti-TNF biologics used clinically. All doses of Quad-X™, from 0.5 to 30 mg/kg, significantly blocked the development of polyarthritis. At 0.5 mg/kg Quad-X™, the arthritis score was improved by 76% and the histopathology score by 63%. At 3 mg/kg Quad-X™, control of disease was almost complete at 90% (arthritis) and 88% (histopathology). In marked contrast, 1 mg/kg Humira® saw profound disease breakthrough with scores of 39 and 16% respectively, increasing to a respectable 82 and 86% inhibition at 10 mg/kg Humira®. We have previously reported the superior potency of anti-TNF-α VNARs in vitro and in these studies translate this superiority into an in vivo setting and demonstrate the potential of VNAR formats to meet the requirements of next-generation anti-TNF-α therapies.


Assuntos
Adalimumab/farmacologia , Artrite Reumatoide , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Modelos Animais de Doenças , Cães , Humanos , Camundongos , Camundongos Transgênicos , Tubarões , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
11.
Protein Eng Des Sel ; 32(9): 385-399, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32119084

RESUMO

The adaptive immune system of cartilaginous fish (Elasmobranchii), comprising of classical hetero-tetrameric antibodies, is enhanced through the presence of a naturally occurring homodimeric antibody-like immunoglobulin-the new antigen receptor (IgNAR). The binding site of the IgNAR variable single-domain (VNAR) offers advantages of reduced size (<1/10th of classical immunoglobulin) and extended binding topographies, making it an ideal candidate for accessing cryptic epitopes otherwise intractable to conventional antibodies. These attributes, coupled with high physicochemical stability and amenability to phage display, facilitate the selection of VNAR binders to challenging targets. Here, we explored the unique attributes of these single domains for potential application as bioprocessing reagents in the development of the SEED-Fc platform, designed to generate therapeutic bispecific antibodies. A panel of unique VNARs specific to the SEED homodimeric (monospecific) 'by-products' were isolated from a shark semi-synthetic VNAR library via phage display. The lead VNAR candidate exhibited low nanomolar affinity and superior selectivity to SEED homodimer, with functionality being retained upon exposure to extreme physicochemical conditions that mimic their applicability as purification agents. Ultimately, this work exemplifies the robustness of the semi-synthetic VNAR platform, the predisposition of the VNAR paratope to recognise novel epitopes and the potential for routine generation of tailor-made VNAR-based bioprocessing reagents.


Assuntos
Anticorpos Biespecíficos/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Anticorpos de Domínio Único/imunologia , Sequência de Aminoácidos , Anticorpos Biespecíficos/química , Sítios de Ligação , Humanos , Concentração de Íons de Hidrogênio , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Indicadores e Reagentes/metabolismo , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Anticorpos de Domínio Único/química
12.
Transl Vis Sci Technol ; 8(5): 11, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31588375

RESUMO

PURPOSE: We assess the efficacy of two next-generation biologic therapies in treating experimental autoimmune uveitis. METHODS: Variable binding domains from shark immunoglobulin novel antigen receptors (VNARs) were fused with a mouse IgG2a constant domain (Fc) to generate VNAR-Fc molecules with binding specificity to tumor necrosis factor alpha (TNFα) or inducible T-cell costimulatory ligand (ICOSL). Treatment with VNAR-Fc fusion proteins was compared to treatment with dexamethasone or vehicle in the Lewis rat model of experimental autoimmune uveitis (EAU). Inflammation control was determined by comparing OCT clinical and histologic scores, and aqueous humor protein concentration. The concentration of 27 inflammatory cytokines in the aqueous humor was measured using a multiplex enzyme-linked immunosorbent assay platform. RESULTS: Administration of S17-Fc significantly decreased clinical, histologic, and aqueous protein levels when compared to vehicle treatment. Inflammation scores and aqueous protein levels in A5-Fc-treated animals were decreased compared to vehicle treatment, but not significantly. The concentration of vascular endothelial growth factor (VEGF), regulated on activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein 1 alpha (MIP-1α), interleukin (IL)-1ß, LPS-induced CXC chemokine (LIX), monocyte chemoattractant protein-1 (MCP-1), and interferon (IFN)-γ were significantly decreased in the eyes of animals treated with dexamethasone. VNAR treatment demonstrated a trend towards decreased cytokine concentrations, but only VEGF and RANTES were significantly decreased by S17-Fc. CONCLUSIONS: Treatment with the anti-TNFα VNAR S17-Fc ameliorates EAU as effectively as treatment with corticosteroids. TRANSLATIONAL RELEVANCE: VNAR-Fc molecules are a next-generation therapeutic biologic that overcome the limitations of classical biologic monoclonal antibodies, such as complex structure, large size, and limited tissue penetration. This is a novel drug modality that could result in the development of new therapy options for patients with noninfectious uveitis.

13.
J Antimicrob Chemother ; 61(2): 315-22, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18033783

RESUMO

OBJECTIVES: Expression of fungal virulence factors can be influenced by exposure to antifungal agents. To test this hypothesis, we determined the effects of subinhibitory concentrations of three antifungal agents on expression of three secreted proteinase genes associated with virulence in filamentous forms of Candida albicans. METHODS: GFP-SAP promoter constructs and fluorescence measurement, transcript profiling and RT-PCR in vitro and in an animal model of disseminated Candida infection. RESULTS: Exposure of C. albicans to subinhibitory concentrations of fluconazole in RPMI 1640 in the absence of serum led to up-regulation of the virulence-associated genes SAP4, SAP5 and SAP6 in hyphae and long pseudohyphae. Measurements with green fluorescent protein (GFP)-tagged promoters showed that the fluorescence of SAP4 and SAP6 under these conditions was strongest in the apical tip compartments of these filamentous cells and declined in compartments more proximal to the parent yeast cell. By contrast, SAP5-GFP fluorescence was expressed at similar levels in all cell compartments. Exposure to fluconazole led to significant increases in GFP-SAP4 and -SAP6 fluorescence in the filaments; itraconazole exposure also significantly increased GFP-SAP4 fluorescence, whereas flucytosine had no effect on any of the constructs. In experimentally infected animals, fluorescence of the GFP-SAP promoter fungal cells in kidney tissues was greater than that was seen in vitro for all four SAP constructs: treatment of animals with fluconazole did not significantly increase SAP promoter expression as measured by GFP fluorescence. CONCLUSIONS: Azole antifungal agents stimulated up-regulation of SAP4 and SAP6 genes in filamentous C. albicans cells in vitro and may therefore influence virulence as well as growth of the fungus. However, such effects appear to be transient in vivo.


Assuntos
Antifúngicos/farmacologia , Ácido Aspártico Endopeptidases/biossíntese , Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Proteínas Fúngicas/biossíntese , Regulação para Cima/efeitos dos fármacos , Animais , Ácido Aspártico Endopeptidases/genética , Candida albicans/citologia , Candida albicans/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/fisiologia , Humanos , Camundongos , Regulação para Cima/fisiologia
14.
J Immunol Res ; 2018: 4089459, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30417018

RESUMO

Lymphocyte costimulation plays a central role in immunology, inflammation, and immunotherapy. The inducible T cell costimulator (ICOS) is expressed on T cells following peptide: MHC engagement with CD28 costimulation. The interaction of ICOS with its sole ligand, the inducible T cell costimulatory ligand (ICOSL; also known as B7-related protein-1), triggers a number of key activities of T cells including differentiation and cytokine production. Suppression of T cell activation can be achieved by blocking this interaction and has been shown to be an effective means of ameliorating disease in models of autoimmunity. In this study, we isolated specific anti-ICOSL new antigen receptor domains from a synthetic phage display library and demonstrated their ability to block the ICOS/ICOSL interaction and inhibit T cell proliferation. Anti-mouse ICOSL domains, considered here as surrogates for the use of anti-human ICOSL domains in patient therapy, were tested for efficacy in a collagen-induced mouse model of rheumatoid arthritis where they significantly decreased the inflammation of joints and delayed and reduced overall disease progression and severity.


Assuntos
Artrite Experimental/terapia , Artrite Reumatoide/imunologia , Imunoterapia/métodos , Inflamação/terapia , Receptores de Antígenos de Linfócitos B/uso terapêutico , Anticorpos de Cadeia Única/uso terapêutico , Linfócitos T/efeitos dos fármacos , Animais , Artrite Experimental/imunologia , Células CHO , Proliferação de Células , Técnicas de Visualização da Superfície Celular , Cricetulus , Modelos Animais de Doenças , Feminino , Humanos , Ligante Coestimulador de Linfócitos T Induzíveis/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Inflamação/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos DBA , Ligação Proteica , Receptores de Antígenos de Linfócitos B/genética , Anticorpos de Cadeia Única/genética , Linfócitos T/imunologia
15.
Front Immunol ; 8: 1121, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993766

RESUMO

Induced costimulatory ligand (ICOSL) plays an important role in the activation of T cells through its interaction with the inducible costimulator, ICOS. Suppression of full T cell activation can be achieved by blocking this interaction and has been shown to be an effective means of ameliorating disease in models of autoimmunity and inflammation. In this study, we demonstrated the ability of a novel class of anti-ICOSL antigen-binding single domains derived from sharks (VNARs) to effectively reduce inflammation in a murine model of non-infectious uveitis. In initial selections, specific VNARs that recognized human ICOSL were isolated from an immunized nurse shark phage display library and lead domains were identified following their performance in a series of antigen selectivity and in vitro bioassay screens. High potency in cell-based blocking assays suggested their potential as novel binders suitable for further therapeutic development. To test this hypothesis, surrogate anti-mouse ICOSL VNAR domains were isolated from the same phage display library and the lead VNAR clone selected via screening in binding and ICOS/ICOSL blocking experiments. The VNAR domain with the highest potency in cell-based blocking of ICOS/ICOSL interaction was fused to the Fc portion of human IgG1 and was tested in vivo in a mouse model of interphotoreceptor retinoid-binding protein-induced uveitis. The anti-mICOSL VNAR Fc, injected systemically, resulted in a marked reduction of inflammation in treated mice when compared with untreated control animals. This approach inhibited disease progression to an equivalent extent to that seen for the positive corticosteroid control, cyclosporin A, reducing both clinical and histopathological scores. These results represent the first demonstration of efficacy of a VNAR binding domain in a relevant clinical model of disease and highlight the potential of VNARs for the treatment of auto-inflammatory conditions.

16.
Front Immunol ; 8: 1780, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312310

RESUMO

The management of chronic inflammatory diseases, such as inflammatory bowel disease, psoriasis, and rheumatoid arthritis has significantly improved over the last decade with the clinical availability of anti-TNF-α biologics. Despite this undoubted treatment success, a combination of acquired resistance together with an increased risk of systemic complications, means that a significant number of patients either fail to find a suitable targeted therapy or frustratingly discover that an approach that did work is no longer efficacious. Here, we report the isolation and characterization of a new class of super-neutralizing anti-TNF-α biologics formats, the building blocks of which were originally derived as variable new antigen receptor (VNAR) domains from an immunized nurse shark. These parental small, stable VNAR monomers recognize and neutralize tumor necrosis factor (TNF)-α, in cell-based assays, at nanomolar concentrations. However, the simple, single-chain molecular architecture of VNARs allows for easy and multiple reformatting options. Through reformatting, we achieved a 50,000-fold enhancement in in vitro efficacy with super-neutralizing fusion proteins able to block TNF-α induced cytotoxicity in the 2-5 pM range while retaining other functionality through the addition of fusion proteins known to extend serum half-life in vivo. In an in vitro intestinal epithelial barrier dysfunction efficacy model, the lead VNAR domains, restored barrier function and prevented paracellular flux with comparable efficacy to adalimumab (Humira®). In addition, all multivalent VNAR constructs restored trans-epithelial electrical resistance (TEER) to approximately 94% of the untreated control. Reformatted VNAR domains should be considered as a new class of biologic agents for the treatment of hTNF-α driven diseases; either used systemically with appropriate half-life extension or alternatively where site-specific delivery of small and stable neutralizers may provide improvements to current therapy options.

17.
Curr Pharm Des ; 22(43): 6519-6526, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27604606

RESUMO

Phage display technology has revolutionized the science of drug discovery by transforming the generation and manipulation of ligands, such as antibody fragments, enzymes, and peptides. The basis of this technology is the expression of recombinant proteins or peptides fused to a phage coat protein, and subsequent isolation of ligands based on a variety of catalytic, physicochemical/binding kinetic and/or biological characteristics. An incredible number of diagnostic and therapeutic domains have been successfully isolated using phage display technology. The variable domain of the New Antigen Receptors (VNAR) found in cartilaginous fish, is also amenable to phage display selection. Whilst not an antibody, VNARs are unquestionable the oldest (450 million years), and smallest antigen binding, single-domains so far identified in the vertebrate kingdom. Their role as an integral part of the adaptive immune system of sharks has been well established, enhancing our understanding of the evolutionary origins of humoral immunity and the unusual but divergent ancestry of the VNARs themselves. VNARs exhibit remarkable physicochemical properties, such as small size, stability in extreme conditions, solubility, molecular flexibility, high affinity and selectivity for target. The purpose of this review is to illustrate the important role phage display has played in the isolation and characterization of potent therapeutic and diagnostic VNAR domains.


Assuntos
Bacteriófagos/genética , Descoberta de Drogas , Receptores de Antígenos/imunologia , Adaptação Fisiológica/imunologia , Animais , Sítios de Ligação , Humanos
18.
MAbs ; 7(1): 15-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25523873

RESUMO

In addition to antibodies with the classical composition of heavy and light chains, the adaptive immune repertoire of sharks also includes a heavy-chain only isotype, where antigen binding is mediated exclusively by a small and highly stable domain, referred to as vNAR. In recent years, due to their high affinity and specificity combined with their small size, high physicochemical stability and low-cost of production, vNAR fragments have evolved as promising target-binding scaffolds that can be tailor-made for applications in medicine and biotechnology. This review highlights the structural features of vNAR molecules, addresses aspects of their generation using immunization or in vitro high throughput screening methods and provides examples of therapeutic, diagnostic and other biotechnological applications.


Assuntos
Proteínas de Peixes/química , Cadeias Pesadas de Imunoglobulinas/química , Animais , Proteínas de Peixes/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Tubarões
19.
Dev Comp Immunol ; 36(4): 665-79, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22040740

RESUMO

The cartilaginous fish (chimeras, sharks, skates and rays) are the oldest group relative to mammals in which an adaptive immune system founded upon immunoglobulins has been found. In this manuscript we characterize the immunoglobulins of the spiny dogfish (Squalus acanthias) at both the molecular and expressed protein levels. Despite the presence of hundreds of IgM clusters in this species the serum levels of this isotype are comparatively low. However, analysis of cDNA sequences and serum protein suggests microheterogeneity in the IgM heavy chains and supports the proposal that different clusters are preferentially used in the two forms (monomer or pentamer) of this isotype. We also found that the IgNAR isotype in this species exists in a previously unknown multimeric format in serum. Finally, we identified a new form of the IgW isotype (the shark IgD orthologue), in which the leader is spliced directly to the first constant domain, resulting in a molecule lacking an antigen-binding domain.


Assuntos
Imunoglobulinas/química , Imunoglobulinas/imunologia , Squalus acanthias/imunologia , Sequência de Aminoácidos , Animais , Imunoglobulinas/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Tubarões/genética , Tubarões/imunologia , Squalus acanthias/genética
20.
MAbs ; 4(6): 673-85, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23676205

RESUMO

Advances in recombinant antibody technology and protein engineering have provided the opportunity to reduce antibodies to their smallest binding domain components and have concomitantly driven the requirement for devising strategies to increase serum half-life to optimise drug exposure, thereby increasing therapeutic efficacy. In this study, we adopted an immunization route to raise picomolar affinity shark immunoglobulin new antigen receptors (IgNARs) to target human serum albumin (HSA). From our model shark species, Squalus acanthias, a phage display library encompassing the variable binding domain of IgNAR (VNAR) was constructed, screened against target, and positive clones were characterized for affinity and specificity. N-terminal and C-terminal molecular fusions of our lead hit in complex with a naïve VNAR domain were expressed, purified and exhibited the retention of high affinity binding to HSA, but also cross-selectivity to mouse, rat and monkey serum albumin both in vitro and in vivo. Furthermore, the naïve VNAR had enhanced pharmacokinetic (PK) characteristics in both N- and C-terminal orientations and when tested as a three domain construct with naïve VNAR flanking the HSA binding domain at both the N and C termini. Molecules derived from this platform technology also demonstrated the potential for clinical utility by being available via the subcutaneous route of delivery. This study thus demonstrates the first in vivo functional efficacy of a VNAR binding domain with the ability to enhance PK properties and support delivery of multifunctional therapies.


Assuntos
Produtos Biológicos/farmacocinética , Receptores de Antígenos/metabolismo , Proteínas Recombinantes de Fusão/farmacocinética , Anticorpos de Domínio Único/metabolismo , Animais , Afinidade de Anticorpos , Especificidade de Anticorpos , Desenho de Fármacos , Haplorrinos , Humanos , Camundongos , Engenharia de Proteínas/métodos , Ratos , Receptores de Antígenos/genética , Proteínas Recombinantes de Fusão/genética , Albumina Sérica/imunologia , Tubarões , Anticorpos de Domínio Único/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa