Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Theor Appl Genet ; 137(3): 68, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441678

RESUMO

KEY MESSAGE: Green Leaf Area Index dynamics is a promising secondary trait for grain yield and drought tolerance. Multivariate GWAS is particularly well suited to identify the genetic determinants of the green leaf area index dynamics. Improvement of maize grain yield is impeded by important genotype-environment interactions, especially under drought conditions. The use of secondary traits, that are correlated with yield, more heritable and less prone to genotype-environment interactions, can increase breeding efficiency. Here, we studied the genetic basis of a new secondary trait: the green leaf area index (GLAI) dynamics over the maize life cycle. For this, we used an unmanned aerial vehicle to characterize the GLAI dynamics of a diverse panel in well-watered and water-deficient trials in two years. From the dynamics, we derived 24 traits (slopes, durations, areas under the curve), and showed that six of them were heritable traits representative of the panel diversity. To identify the genetic determinants of GLAI, we compared two genome-wide association approaches: a univariate (single-trait) method and a multivariate (multi-trait) method combining GLAI traits, grain yield, and precocity. The explicit modeling of correlation structure between secondary traits and grain yield in the multivariate mixed model led to 2.5 times more associations detected. A total of 475 quantitative trait loci (QTLs) were detected. The genetic architecture of GLAI traits appears less complex than that of yield with stronger-effect QTLs that are more stable between environments. We also showed that a subset of GLAI QTLs explains nearly one fifth of yield variability across a larger environmental network of 11 water-deficient trials. GLAI dynamics is a promising grain yield secondary trait in optimal and drought conditions, and the detected QTLs could help to increase breeding efficiency through a marker-assisted approach.


Assuntos
Secas , Zea mays , Zea mays/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Folhas de Planta/genética , Grão Comestível/genética , Água
2.
Plant Physiol ; 186(2): 977-997, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33710303

RESUMO

Canopy light interception determines the amount of energy captured by a crop, and is thus critical to modeling crop growth and yield, and may substantially contribute to the prediction uncertainty of crop growth models (CGMs). We thus analyzed the canopy light interception models of the 26 wheat (Triticum aestivum) CGMs used by the Agricultural Model Intercomparison and Improvement Project (AgMIP). Twenty-one CGMs assume that the light extinction coefficient (K) is constant, varying from 0.37 to 0.80 depending on the model. The other models take into account the illumination conditions and assume either that all green surfaces in the canopy have the same inclination angle (θ) or that θ distribution follows a spherical distribution. These assumptions have not yet been evaluated due to a lack of experimental data. Therefore, we conducted a field experiment with five cultivars with contrasting leaf stature sown at normal and double row spacing, and analyzed θ distribution in the canopies from three-dimensional canopy reconstructions. In all the canopies, θ distribution was well represented by an ellipsoidal distribution. We thus carried out an intercomparison between the light interception models of the AgMIP-Wheat CGMs ensemble and a physically based K model with ellipsoidal leaf angle distribution and canopy clumping (KellC). Results showed that the KellC model outperformed current approaches under most illumination conditions and that the uncertainty in simulated wheat growth and final grain yield due to light models could be as high as 45%. Therefore, our results call for an overhaul of light interception models in CGMs.


Assuntos
Modelos Teóricos , Triticum/crescimento & desenvolvimento , Produtos Agrícolas , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/efeitos da radiação , Luz , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Triticum/efeitos da radiação
3.
Plant Physiol ; 181(3): 881-890, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31420444

RESUMO

The extraction of desirable heritable traits for crop improvement from high-throughput phenotyping (HTP) observations remains challenging. We developed a modeling workflow named "Digital Plant Phenotyping Platform" (D3P), to access crop architectural traits from HTP observations. D3P couples the Architectural model of DEvelopment based on L-systems (ADEL) wheat (Triticum aestivum) model (ADEL-Wheat), which describes the time course of the three-dimensional architecture of wheat crops, with simulators of images acquired with HTP sensors. We demonstrated that a sequential assimilation of the green fraction derived from Red-Green-Blue images of the crop into D3P provides accurate estimates of five key parameters (phyllochron, lamina length of the first leaf, rate of elongation of leaf lamina, number of green leaves at the start of leaf senescence, and minimum number of green leaves) of the ADEL-Wheat model that drive the time course of green area index and the number of axes with more than three leaves at the end of the tillering period. However, leaf and tiller orientation and inclination characteristics were poorly estimated. D3P was also used to optimize the observational configuration. The results, obtained from in silico experiments conducted on wheat crops at several vegetative stages, showed that the accessible traits could be estimated accurately with observations made at 0° and 60° zenith view inclination with a temporal frequency of 100 °Cd (degree day). This illustrates the potential of the proposed holistic approach that integrates all the available information into a consistent system for interpretation. The potential benefits and limitations of the approach are further discussed.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Fenótipo
4.
Remote Sens Environ ; 231: 111272, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36082142

RESUMO

Terrestrial gross primary productivity (GPP) plays an essential role in the global carbon cycle, but the quantification of the spatial and temporal variations in photosynthesis is still largely uncertain. Our work aimed to investigate the potential of remote sensing to provide new insights into plant photosynthesis at a fine spatial resolution. This goal was achieved by exploiting high-resolution images acquired with the FLuorescence EXplorer (FLEX) airborne demonstrator HyPlant. The sensor was flown over a mixed forest, and the images collected were elaborated to obtain two independent indicators of plant photosynthesis. First, maps of sun-induced chlorophyll fluorescence (F), a novel indicator of plant photosynthetic activity, were successfully obtained at both the red and far-red peaks (r2 = 0.89 and p < 0.01, r2 = 0.77 and p < 0.01, respectively, compared to top-of-canopy ground-based measurements acquired synchronously with the overflight) over the forested study area. Second, maps of GPP and absorbed photosynthetically active radiation (APAR) were derived using a customised version of the coupled biophysical model Breathing Earth System Simulator (BESS). The model was driven with airborne-derived maps of key forest traits (i.e., leaf chlorophyll content (LCC) and leaf area index (LAI)) and meteorological data providing a high-resolution snapshot of the variables of interest across the study site. The LCC and LAI were accurately estimated (RMSE = 5.66 µg cm-2 and RMSE = 0.51 m2m-2, respectively) through an optimised Look-Up-Table-based inversion of the PROSPECT-4-INFORM radiative transfer model, ensuring the accurate representation of the spatial variation of these determinants of the ecosystem's functionality. The spatial relationships between the measured F and modelled BESS outputs were then analysed to interpret the variability of ecosystem functioning at a regional scale. The results showed that far-red F is significantly correlated with the GPP (r2 = 0.46, p < 0.001) and APAR (r2 = 0.43, p < 0.001) in the spatial domain and that this relationship is nonlinear. Conversely, no statistically significant relationships were found between the red F and the GPP or APAR (p > 0.05). The spatial relationships found at high resolution provide valuable insight into the critical role of spatial heterogeneity in controlling the relationship between the far-red F and the GPP, indicating the need to consider this heterogeneity at a coarser resolution.

5.
J Exp Bot ; 69(10): 2705-2716, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29617837

RESUMO

Leaf rolling in maize crops is one of the main plant reactions to water stress that can be visually scored in the field. However, leaf-scoring techniques do not meet the high-throughput requirements needed by breeders for efficient phenotyping. Consequently, this study investigated the relationship between leaf-rolling scores and changes in canopy structure that can be determined by high-throughput remote-sensing techniques. Experiments were conducted in 2015 and 2016 on maize genotypes subjected to water stress. Leaf-rolling was scored visually over the whole day around the flowering stage. Concurrent digital hemispherical photographs were taken to evaluate the impact of leaf-rolling on canopy structure using the computed fraction of intercepted diffuse photosynthetically active radiation, FIPARdif. The results showed that leaves started to roll due to water stress around 09:00 h and leaf-rolling reached its maximum around 15:00 h (the photoperiod was about 05:00-20:00 h). In contrast, plants maintained under well-watered conditions did not show any significant rolling during the same day. A canopy-level index of rolling (CLIR) is proposed to quantify the diurnal changes in canopy structure induced by leaf-rolling. It normalizes for the differences in FIPARdif between genotypes observed in the early morning when leaves are unrolled, as well as for yearly effects linked to environmental conditions. Leaf-level rolling score was very strongly correlated with changes in canopy structure as described by the CLIR (r2=0.86, n=370). The daily time course of rolling was characterized using the amplitude of variation, and the rate and the timing of development computed at both the leaf and canopy levels. Results obtained from eight genotypes common between the two years of experiments showed that the amplitude of variation of the CLIR was the more repeatable trait (Spearman coefficient ρ=0.62) as compared to the rate (ρ=0.29) and the timing of development (ρ=0.33). The potential of these findings for the development of a high-throughput method for determining leaf-rolling based on aerial drone observations are considered.


Assuntos
Dessecação , Ensaios de Triagem em Larga Escala/métodos , Fenótipo , Folhas de Planta/fisiologia , Zea mays/fisiologia , Fotossíntese
6.
Plant Cell Environ ; 39(12): 2609-2623, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27650474

RESUMO

Canopy chlorophyll content (CCC) is an essential ecophysiological variable for photosynthetic functioning. Remote sensing of CCC is vital for a wide range of ecological and agricultural applications. The objectives of this study were to explore simple and robust algorithms for spectral assessment of CCC. Hyperspectral datasets for six vegetation types (rice, wheat, corn, soybean, sugar beet and natural grass) acquired in four locations (Japan, France, Italy and USA) were analysed. To explore the best predictive model, spectral index approaches using the entire wavebands and multivariable regression approaches were employed. The comprehensive analysis elucidated the accuracy, linearity, sensitivity and applicability of various spectral models. Multivariable regression models using many wavebands proved inferior in applicability to different datasets. A simple model using the ratio spectral index (RSI; R815, R704) with the reflectance at 815 and 704 nm showed the highest accuracy and applicability. Simulation analysis using a physically based reflectance model suggested the biophysical soundness of the results. The model would work as a robust algorithm for canopy-chlorophyll-metre and/or remote sensing of CCC in ecosystem and regional scales. The predictive-ability maps using hyperspectral data allow not only evaluation of the relative significance of wavebands in various sensors but also selection of the optimal wavelengths and effective bandwidths.


Assuntos
Clorofila/análise , Plantas/química , Algoritmos , Beta vulgaris/química , Oryza/química , Fotossíntese , Folhas de Planta/química , Tecnologia de Sensoriamento Remoto , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Glycine max/química , Análise Espectral/métodos , Triticum/química , Zea mays/química
7.
Proc Natl Acad Sci U S A ; 110(3): E185-92, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213258

RESUMO

A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact--it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423-855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710-790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.


Assuntos
Nitrogênio/análise , Tecnologia de Sensoriamento Remoto/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Árvores/química , Ciclo do Carbono , Clima , Interpretação Estatística de Dados , Ecossistema , Luz , Ciclo do Nitrogênio , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Espalhamento de Radiação , Árvores/metabolismo , Árvores/efeitos da radiação
8.
Plant Phenomics ; 5: 0046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228515

RESUMO

The sowing pattern has an important impact on light interception efficiency in maize by determining the spatial distribution of leaves within the canopy. Leaves orientation is an important architectural trait determining maize canopies light interception. Previous studies have indicated how maize genotypes may adapt leaves orientation to avoid mutual shading with neighboring plants as a plastic response to intraspecific competition. The goal of the present study is 2-fold: firstly, to propose and validate an automatic algorithm (Automatic Leaf Azimuth Estimation from Midrib detection [ALAEM]) based on leaves midrib detection in vertical red green blue (RGB) images to describe leaves orientation at the canopy level; and secondly, to describe genotypic and environmental differences in leaves orientation in a panel of 5 maize hybrids sowing at 2 densities (6 and 12 plants.m-2) and 2 row spacing (0.4 and 0.8 m) over 2 different sites in southern France. The ALAEM algorithm was validated against in situ annotations of leaves orientation, showing a satisfactory agreement (root mean square [RMSE] error = 0.1, R2 = 0.35) in the proportion of leaves oriented perpendicular to rows direction across sowing patterns, genotypes, and sites. The results from ALAEM permitted to identify significant differences in leaves orientation associated to leaves intraspecific competition. In both experiments, a progressive increase in the proportion of leaves oriented perpendicular to the row is observed when the rectangularity of the sowing pattern increases from 1 (6 plants.m-2, 0.4 m row spacing) towards 8 (12 plants.m-2, 0.8 m row spacing). Significant differences among the 5 cultivars were found, with 2 hybrids exhibiting, systematically, a more plastic behavior with a significantly higher proportion of leaves oriented perpendicularly to avoid overlapping with neighbor plants at high rectangularity. Differences in leaves orientation were also found between experiments in a squared sowing pattern (6 plants.m-2, 0.4 m row spacing), indicating a possible contribution of illumination conditions inducing a preferential orientation toward east-west direction when intraspecific competition is low.

9.
Plant Phenomics ; 5: 0041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223315

RESUMO

The number of leaves at a given time is important to characterize plant growth and development. In this work, we developed a high-throughput method to count the number of leaves by detecting leaf tips in RGB images. The digital plant phenotyping platform was used to simulate a large and diverse dataset of RGB images and corresponding leaf tip labels of wheat plants at seedling stages (150,000 images with over 2 million labels). The realism of the images was then improved using domain adaptation methods before training deep learning models. The results demonstrate the efficiency of the proposed method evaluated on a diverse test dataset, collecting measurements from 5 countries obtained under different environments, growth stages, and lighting conditions with different cameras (450 images with over 2,162 labels). Among the 6 combinations of deep learning models and domain adaptation techniques, the Faster-RCNN model with cycle-consistent generative adversarial network adaptation technique provided the best performance (R2 = 0.94, root mean square error = 8.7). Complementary studies show that it is essential to simulate images with sufficient realism (background, leaf texture, and lighting conditions) before applying domain adaptation techniques. Furthermore, the spatial resolution should be better than 0.6 mm per pixel to identify leaf tips. The method is claimed to be self-supervised since no manual labeling is required for model training. The self-supervised phenotyping approach developed here offers great potential for addressing a wide range of plant phenotyping problems. The trained networks are available at https://github.com/YinglunLi/Wheat-leaf-tip-detection.

10.
Plant Phenomics ; 5: 0017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37040294

RESUMO

Head (panicle) density is a major component in understanding crop yield, especially in crops that produce variable numbers of tillers such as sorghum and wheat. Use of panicle density both in plant breeding and in the agronomy scouting of commercial crops typically relies on manual counts observation, which is an inefficient and tedious process. Because of the easy availability of red-green-blue images, machine learning approaches have been applied to replacing manual counting. However, much of this research focuses on detection per se in limited testing conditions and does not provide a general protocol to utilize deep-learning-based counting. In this paper, we provide a comprehensive pipeline from data collection to model deployment in deep-learning-assisted panicle yield estimation for sorghum. This pipeline provides a basis from data collection and model training, to model validation and model deployment in commercial fields. Accurate model training is the foundation of the pipeline. However, in natural environments, the deployment dataset is frequently different from the training data (domain shift) causing the model to fail, so a robust model is essential to build a reliable solution. Although we demonstrate our pipeline in a sorghum field, the pipeline can be generalized to other grain species. Our pipeline provides a high-resolution head density map that can be utilized for diagnosis of agronomic variability within a field, in a pipeline built without commercial software.

11.
Plant Phenomics ; 5: 0116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026470

RESUMO

The strong societal demand to reduce pesticide use and adaptation to climate change challenges the capacities of phenotyping new varieties in the vineyard. High-throughput phenotyping is a way to obtain meaningful and reliable information on hundreds of genotypes in a limited period. We evaluated traits related to growth in 209 genotypes from an interspecific grapevine biparental cross, between IJ119, a local genitor, and Divona, both in summer and in winter, using several methods: fresh pruning wood weight, exposed leaf area calculated from digital images, leaf chlorophyll concentration, and LiDAR-derived apparent volumes. Using high-density genetic information obtained by the genotyping by sequencing technology (GBS), we detected 6 regions of the grapevine genome [quantitative trait loci (QTL)] associated with the variations of the traits in the progeny. The detection of statistically significant QTLs, as well as correlations (R2) with traditional methods above 0.46, shows that LiDAR technology is effective in characterizing the growth features of the grapevine. Heritabilities calculated with LiDAR-derived total canopy and pruning wood volumes were high, above 0.66, and stable between growing seasons. These variables provided genetic models explaining up to 47% of the phenotypic variance, which were better than models obtained with the exposed leaf area estimated from images and the destructive pruning weight measurements. Our results highlight the relevance of LiDAR-derived traits for characterizing genetically induced differences in grapevine growth and open new perspectives for high-throughput phenotyping of grapevines in the vineyard.

12.
Plant Phenomics ; 5: 0059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239739

RESUMO

Data competitions have become a popular approach to crowdsource new data analysis methods for general and specialized data science problems. Data competitions have a rich history in plant phenotyping, and new outdoor field datasets have the potential to embrace solutions across research and commercial applications. We developed the Global Wheat Challenge as a generalization competition in 2020 and 2021 to find more robust solutions for wheat head detection using field images from different regions. We analyze the winning challenge solutions in terms of their robustness when applied to new datasets. We found that the design of the competition had an influence on the selection of winning solutions and provide recommendations for future competitions to encourage the selection of more robust solutions.

13.
Sci Data ; 10(1): 302, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208401

RESUMO

Applying deep learning to images of cropping systems provides new knowledge and insights in research and commercial applications. Semantic segmentation or pixel-wise classification, of RGB images acquired at the ground level, into vegetation and background is a critical step in the estimation of several canopy traits. Current state of the art methodologies based on convolutional neural networks (CNNs) are trained on datasets acquired under controlled or indoor environments. These models are unable to generalize to real-world images and hence need to be fine-tuned using new labelled datasets. This motivated the creation of the VegAnn - Vegetation Annotation - dataset, a collection of 3775 multi-crop RGB images acquired for different phenological stages using different systems and platforms in diverse illumination conditions. We anticipate that VegAnn will help improving segmentation algorithm performances, facilitate benchmarking and promote large-scale crop vegetation segmentation research.

14.
Plant Phenomics ; 2022: 9803570, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451876

RESUMO

Pixel segmentation of high-resolution RGB images into chlorophyll-active or nonactive vegetation classes is a first step often required before estimating key traits of interest. We have developed the SegVeg approach for semantic segmentation of RGB images into three classes (background, green, and senescent vegetation). This is achieved in two steps: A U-net model is first trained on a very large dataset to separate whole vegetation from background. The green and senescent vegetation pixels are then separated using SVM, a shallow machine learning technique, trained over a selection of pixels extracted from images. The performances of the SegVeg approach is then compared to a 3-class U-net model trained using weak supervision over RGB images segmented with SegVeg as groundtruth masks. Results show that the SegVeg approach allows to segment accurately the three classes. However, some confusion is observed mainly between the background and senescent vegetation, particularly over the dark and bright regions of the images. The U-net model achieves similar performances, with slight degradation over the green vegetation: the SVM pixel-based approach provides more precise delineation of the green and senescent patches as compared to the convolutional nature of U-net. The use of the components of several color spaces allows to better classify the vegetation pixels into green and senescent. Finally, the models are used to predict the fraction of three classes over whole images or regularly spaced grid-pixels. Results show that green fraction is very well estimated (R 2 = 0.94) by the SegVeg model, while the senescent and background fractions show slightly degraded performances (R 2 = 0.70 and 0.73, respectively) with a mean 95% confidence error interval of 2.7% and 2.1% for the senescent vegetation and background, versus 1% for green vegetation. We have made SegVeg publicly available as a ready-to-use script and model, along with the entire annotated grid-pixels dataset. We thus hope to render segmentation accessible to a broad audience by requiring neither manual annotation nor knowledge or, at least, offering a pretrained model for more specific use.

15.
Biology (Basel) ; 11(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35053148

RESUMO

There is currently a strong societal demand for sustainability, quality, and safety in bread wheat production. To address these challenges, new and innovative knowledge, resources, tools, and methods to facilitate breeding are needed. This starts with the development of high throughput genomic tools including single nucleotide polymorphism (SNP) arrays, high density molecular marker maps, and full genome sequences. Such powerful tools are essential to perform genome-wide association studies (GWAS), to implement genomic and phenomic selection, and to characterize the worldwide diversity. This is also useful to breeders to broaden the genetic basis of elite varieties through the introduction of novel sources of genetic diversity. Improvement in varieties particularly relies on the detection of genomic regions involved in agronomical traits including tolerance to biotic (diseases and pests) and abiotic (drought, nutrient deficiency, high temperature) stresses. When enough resolution is achieved, this can result in the identification of candidate genes that could further be characterized to identify relevant alleles. Breeding must also now be approached through in silico modeling to simulate plant development, investigate genotype × environment interactions, and introduce marker-trait linkage information in the models to better implement genomic selection. Breeders must be aware of new developments and the information must be made available to the world wheat community to develop new high-yielding varieties that can meet the challenge of higher wheat production in a sustainable and fluctuating agricultural context. In this review, we compiled all knowledge and tools produced during the BREEDWHEAT project to show how they may contribute to face this challenge in the coming years.

16.
Front Plant Sci ; 13: 828864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371133

RESUMO

With the widespread use of high-throughput phenotyping systems, growth process data are expected to become more easily available. By applying genomic prediction to growth data, it will be possible to predict the growth of untested genotypes. Predicting the growth process will be useful for crop breeding, as variability in the growth process has a significant impact on the management of plant cultivation. However, the integration of growth modeling and genomic prediction has yet to be studied in depth. In this study, we implemented new prediction models to propose a novel growth prediction scheme. Phenotype data of 198 soybean germplasm genotypes were acquired for 3 years in experimental fields in Tottori, Japan. The longitudinal changes in the green fractions were measured using UAV remote sensing. Then, a dynamic model was fitted to the green fraction to extract the dynamic characteristics of the green fraction as five parameters. Using the estimated growth parameters, we developed models for genomic prediction of the growth process and tested whether the inclusion of the dynamic model contributed to better prediction of growth. Our proposed models consist of two steps: first, predicting the parameters of the dynamics model with genomic prediction, and then substituting the predicted values for the parameters of the dynamics model. By evaluating the heritability of the growth parameters, the dynamic model was able to effectively extract genetic diversity in the growth characteristics of the green fraction. In addition, the proposed prediction model showed higher prediction accuracy than conventional genomic prediction models, especially when the future growth of the test population is a prediction target given the observed values in the first half of growth as training data. This indicates that our model was able to successfully combine information from the early growth period with phenotypic data from the training population for prediction. This prediction method could be applied to selection at an early growth stage in crop breeding, and could reduce the cost and time of field trials.

19.
Plant Phenomics ; 2021: 9892647, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957414

RESUMO

Multispectral observations from unmanned aerial vehicles (UAVs) are currently used for precision agriculture and crop phenotyping applications to monitor a series of traits allowing the characterization of the vegetation status. However, the limited autonomy of UAVs makes the completion of flights difficult when sampling large areas. Increasing the throughput of data acquisition while not degrading the ground sample distance (GSD) is, therefore, a critical issue to be solved. We propose here a new image acquisition configuration based on the combination of two focal length (f) optics: an optics with f = 4.2 mm is added to the standard f = 8 mm (SS: single swath) of the multispectral camera (DS: double swath, double of the standard one). Two flights were completed consecutively in 2018 over a maize field using the AIRPHEN multispectral camera at 52 m altitude. The DS flight plan was designed to get 80% overlap with the 4.2 mm optics, while the SS one was designed to get 80% overlap with the 8 mm optics. As a result, the time required to cover the same area is halved for the DS as compared to the SS. The georeferencing accuracy was improved for the DS configuration, particularly for the Z dimension due to the larger view angles available with the small focal length optics. Application to plant height estimates demonstrates that the DS configuration provides similar results as the SS one. However, for both the DS and SS configurations, degrading the quality level used to generate the 3D point cloud significantly decreases the plant height estimates.

20.
Plant Phenomics ; 2021: 9895241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557676

RESUMO

Plant growth rhythm in structural traits is important for better understanding plant response to the ever-changing environment. Terrestrial laser scanning (TLS) is a well-suited tool to study structural rhythm under field conditions. Recent studies have used TLS to describe the structural rhythm of trees, but no consistent patterns have been drawn. Meanwhile, whether TLS can capture structural rhythm in crops is unclear. Here, we aim to explore the seasonal and circadian rhythms in maize structural traits at both the plant and leaf levels from time-series TLS. The seasonal rhythm was studied using TLS data collected at four key growth periods, including jointing, bell-mouthed, heading, and maturity periods. Circadian rhythms were explored by using TLS data acquired around every 2 hours in a whole day under standard and cold stress conditions. Results showed that TLS can quantify the seasonal and circadian rhythm in structural traits at both plant and leaf levels. (1) Leaf inclination angle decreased significantly between the jointing stage and bell-mouthed stage. Leaf azimuth was stable after the jointing stage. (2) Some individual-level structural rhythms (e.g., azimuth and projected leaf area/PLA) were consistent with leaf-level structural rhythms. (3) The circadian rhythms of some traits (e.g., PLA) were not consistent under standard and cold stress conditions. (4) Environmental factors showed better correlations with leaf traits under cold stress than standard conditions. Temperature was the most important factor that significantly correlated with all leaf traits except leaf azimuth. This study highlights the potential of time-series TLS in studying outdoor agricultural chronobiology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa