Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(18): e2400752121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648484

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare disease caused by the expression of progerin, a mutant protein that accelerates aging and precipitates death. Given that atherosclerosis complications are the main cause of death in progeria, here, we investigated whether progerin-induced atherosclerosis is prevented in HGPSrev-Cdh5-CreERT2 and HGPSrev-SM22α-Cre mice with progerin suppression in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), respectively. HGPSrev-Cdh5-CreERT2 mice were undistinguishable from HGPSrev mice with ubiquitous progerin expression, in contrast with the ameliorated progeroid phenotype of HGPSrev-SM22α-Cre mice. To study atherosclerosis, we generated atheroprone mouse models by overexpressing a PCSK9 gain-of-function mutant. While HGPSrev-Cdh5-CreERT2 and HGPSrev mice developed a similar level of excessive atherosclerosis, plaque development in HGPSrev-SM22α-Cre mice was reduced to wild-type levels. Our studies demonstrate that progerin suppression in VSMCs, but not in ECs, prevents exacerbated atherosclerosis in progeroid mice.


Assuntos
Aterosclerose , Células Endoteliais , Lamina Tipo A , Músculo Liso Vascular , Progéria , Animais , Camundongos , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Progéria/metabolismo , Progéria/genética , Progéria/patologia , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética
2.
Methods Mol Biol ; 2419: 597-610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237991

RESUMO

Confocal imaging of the mouse aorta is a powerful, indispensable technique for the study of cardiovascular pathology ex vivo. Whole mount en face preparations allow visualization of wide areas of the luminal vessel surface, thus enabling a thorough analysis of multiple cellular and structural features of the endothelial cell-rich intimal layer. This method is a suitable tool for the study of endothelial cell dysfunction and leukocyte infiltration, both of which contribute to the onset of pathological vascular conditions such as atherosclerosis. This chapter provides a complete guide on how to perfuse-fix mouse aorta, dissect the vessel, immunostain target proteins, and carry out en face confocal image acquisition and analysis.


Assuntos
Aterosclerose , Espessura Intima-Media Carotídea , Animais , Aorta/patologia , Aterosclerose/patologia , Células Endoteliais/patologia , Camundongos , Microscopia Confocal/métodos
3.
J Am Coll Cardiol ; 75(8): 919-930, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130928

RESUMO

Aging is the main risk factor for vascular disease and ensuing cardiovascular and cerebrovascular events, the leading causes of death worldwide. In a progressively aging population, it is essential to develop early-life biomarkers that efficiently identify individuals who are at high risk of developing accelerated vascular damage, with the ultimate goal of improving primary prevention and reducing the health care and socioeconomic impact of age-related cardiovascular disease. Studies in experimental models and humans have identified 9 highly interconnected hallmark processes driving mammalian aging. However, strategies to extend health span and life span require understanding of interindividual differences in age-dependent functional decline, known as biological aging. This review summarizes the current knowledge on biological age biomarkers, factors influencing biological aging, and antiaging interventions, with a focus on vascular aspects of the aging process and its cardiovascular disease related manifestations.


Assuntos
Envelhecimento , Biomarcadores , Vasos Sanguíneos/fisiologia , Animais , Humanos
4.
Aging Cell ; 19(9): e13203, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32729659

RESUMO

Aging is the main risk factor for cardiovascular and metabolic diseases, which have become a global concern as the world population ages. These diseases and the aging process are exacerbated in Hutchinson-Gilford progeria syndrome (HGPS or progeria). Here, we evaluated the cardiometabolic disease in animal models of premature and normal aging with the aim of identifying alterations that are shared or specific to each condition. Despite differences in body composition and metabolic markers, prematurely and normally aging mice developed heart failure and similar cardiac electrical abnormalities. High-throughput proteomics of the hearts of progeric and normally aged mice revealed altered protein oxidation and glycation, as well as dysregulated pathways regulating energy metabolism, proteostasis, gene expression, and cardiac muscle contraction. These results were corroborated in the hearts of progeric pigs, underscoring the translational potential of our findings, which could help in the design of strategies to prevent or slow age-related cardiometabolic disease.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Progéria/fisiopatologia , Proteômica/métodos , Envelhecimento , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Suínos
5.
Cell Discov ; 5: 16, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30911407

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder for which no cure exists. The disease is characterized by premature aging and inevitable death in adolescence due to cardiovascular complications. Most HGPS patients carry a heterozygous de novo LMNA c.1824C > T mutation, which provokes the expression of a dominant-negative mutant protein called progerin. Therapies proven effective in HGPS-like mouse models have yielded only modest benefit in HGPS clinical trials. To overcome the gap between HGPS mouse models and patients, we have generated by CRISPR-Cas9 gene editing the first large animal model for HGPS, a knockin heterozygous LMNA c.1824C > T Yucatan minipig. Like HGPS patients, HGPS minipigs endogenously co-express progerin and normal lamin A/C, and exhibit severe growth retardation, lipodystrophy, skin and bone alterations, cardiovascular disease, and die around puberty. Remarkably, the HGPS minipigs recapitulate critical cardiovascular alterations seen in patients, such as left ventricular diastolic dysfunction, altered cardiac electrical activity, and loss of vascular smooth muscle cells. Our analysis also revealed reduced myocardial perfusion due to microvascular damage and myocardial interstitial fibrosis, previously undescribed readouts potentially useful for monitoring disease progression in patients. The HGPS minipigs provide an appropriate preclinical model in which to test human-size interventional devices and optimize candidate therapies before advancing to clinical trials, thus accelerating the development of effective applications for HGPS patients.

6.
Aging (Albany NY) ; 8(12): 3185-3208, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27794564

RESUMO

Centenarians not only enjoy an extraordinary aging, but also show a compression of morbidity. Using functional transcriptomic analysis of peripheral blood mononuclear cells (PMBC) we identified 1721 mRNAs differentially expressed by centenarians when compared with septuagenarians and young people. Sub-network analysis led us to identify Bcl-xL as an important gene up-regulated in centenarians. It is involved in the control of apoptosis, cellular damage protection and also in modulation of immune response, all associated to healthy aging. Indeed, centenarians display lower plasma cytochrome C levels, higher mitochondrial membrane potential and also less cellular damage accumulation than septuagenarians. Leukocyte chemotaxis and NK cell activity are significantly impaired in septuagenarians compared with young people whereas centenarians maintain them. To further ascertain the functional role of Bcl-xL in cellular aging, we found that lymphocytes from septuagenarians transduced with Bcl-xL display a reduction in senescent-related markers. Finally, to demonstrate the role of Bcl-xL in longevity at the organism level, C. elegans bearing a gain of function mutation in the Bcl-xL ortholog ced-9, showed a significant increase in mean and maximal life span. These results show that mRNA expression in centenarians is unique and reveals that Bcl-xL plays an important role in exceptional aging.


Assuntos
Regulação da Expressão Gênica/fisiologia , Longevidade/fisiologia , Proteína bcl-X/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma , Regulação para Cima , Proteína bcl-X/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa