Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Res Toxicol ; 5: 100132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885470

RESUMO

Mercury (Hg) is an important environmental toxicant to which humans are exposed on a regular basis. Mercuric ions within biological systems do not exist as free ions. Rather, they are bound to free sulfhydryl groups (thiols) on biological molecules. Metallothionein (MT) is a cysteine-rich, metal-binding protein that has been shown to bind to heavy metals and reduce their toxic effects in target cells and organs. Little is known about the effect of MT on the handing and disposition of Hg. Therefore, the current study was designed to test the hypothesis that overexpression of MT alters the corporal disposition of Hg and reduces its nephrotoxicity. Furthermore, the current study examined the transport of Hg-MT complexes in isolated proximal tubules. Rats were treated with saline or Zn followed by injection with a non-nephrotoxic (0.5 µmol kg-1), moderately nephrotoxic (1.5 µmol kg-1), or significantly nephrotoxic (2.25 µmol kg-1) dose of HgCl2 (containing radioactive Hg). Pretreatment with Zn increased mRNA expression of MT and enhanced accumulation of Hg in the renal cortex of male and female rats. In addition, injection with Zn also protected animals from Hg-induced nephrotoxicity. Studies using isolated proximal tubules from rabbit kidney demonstrated that Hg-MT is taken up rapidly at the apical and basolateral membranes. The current findings suggest that at least part of this uptake occurs through an endocytic process. This study is the first to examine the uptake of Hg-MT complexes in isolated proximal tubules. Overall, the findings of this study suggest that supplementation with Zn may be a viable strategy for reducing the risk of Hg intoxication in at-risk populations.

2.
Toxicol Lett ; 359: 1-9, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35066093

RESUMO

Mercury (Hg) is a toxic heavy metal to which humans are exposed on a regular basis. Hg has a high affinity for thiol-containing biomolecules with the majority of Hg in blood being bound to albumin. The current study tested the hypothesis that circulating Hg-albumin complexes are taken up into hepatocytes and processed to form Hg-glutathione (GSH) conjugates (GSH-Hg-GSH). Subsequently, GSH-Hg-GSH conjugates are exported from hepatocytes into blood via multidrug resistance transporters (MRP) 3 and 5. To test this hypothesis, the portal vein and hepatic artery in Wistar rats were ligated to prevent delivery of Hg to the liver. Ligated and control rats were injected with HgCl2 or GSH-Hg-GSH (containing radioactive Hg) and the disposition of Hg was assessed in various organs. Renal accumulation of Hg was reduced significantly in ligated rats exposed to HgCl2. In contrast, when rats were exposed to GSH-Hg-GSH, the renal accumulation of Hg was similar in control and ligated rats. Experiments using HepG2 cells indicate that Hg-albumin conjugates are taken up by hepatocytes and additional experiments using inside-out membrane vesicles showed that MRP3 and MRP5 mediate the export of GSH-Hg-GSH from hepatocytes. These data are the first to show that Hg-albumin complexes are processed within hepatocytes to form GSH-Hg-GSH, which is, in part, exported back into blood via MRP3 and MRP5 for eventual excretion in urine.


Assuntos
Glutationa/metabolismo , Artéria Hepática/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Cloreto de Mercúrio/sangue , Cloreto de Mercúrio/metabolismo , Cloreto de Mercúrio/toxicidade , Veia Porta/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Masculino , Ratos , Ratos Wistar
3.
Toxicol Sci ; 154(2): 278-288, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27562559

RESUMO

Chronic kidney disease is characterized by a progressive and permanent loss of functioning nephrons. In order to compensate for this loss, the remaining functional nephrons undergo significant structural and functional changes. We hypothesize that luminal uptake of inorganic mercury (Hg2+), as a conjugate of cysteine (Cys; Cys-S-Hg-S-Cys), is enhanced in S2 segments of proximal tubules from the remnant kidney of uninephrectomized (NPX) rabbits. To test this hypothesis, we measured uptake and accumulation of Cys-S-Hg-S-Cys in isolated perfused S2 segments of proximal tubules from normal (control) and NPX rabbits. The remnant kidney in NPX rabbits undergoes significant hypertrophy during the initial 3 weeks following surgery. Tubules isolated from NPX rabbits were significantly larger in diameter and volume than those from control rabbits. Moreover, real-time PCR analyses of proximal tubules indicated that the expression of selected membrane transporters was greater in kidneys of NPX animals than in kidneys of control animals. When S2 segments from control and NPX rabbits were perfused with cystine or Cys-S-Hg-S-Cys, we found that the rates of luminal disappearance and tubular accumulation of Hg2+ were greater in tubules from NPX animals. These increases were inhibited by the addition of various amino acids to the perfusate. Taken together, our data suggest that hypertrophic changes in proximal tubules lead to an enhanced ability of these tubules to take up and accumulate Hg2.


Assuntos
Cisteína/análogos & derivados , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Compostos Organomercúricos/metabolismo , Reabsorção Renal , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Transporte Biológico , Cisteína/metabolismo , Células Epiteliais/patologia , Feminino , Regulação da Expressão Gênica , Hipertrofia , Técnicas In Vitro , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/fisiopatologia , Nefrectomia , Proteína 1 Transportadora de Ânions Orgânicos/genética , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Perfusão , Coelhos , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
Cancer Chemother Pharmacol ; 51(2): 132-8, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12647014

RESUMO

PURPOSE: The objective of this study was to determine the effect of para-aminohippurate (PAH) and tetraethylammonium (TEA) on basolateral cellular accumulation (C(Pt)) and bath-to-lumen transepithelial transport rates (J(B)(-->)(L)) of platinum from cisplatin (cDDP) and a conjugate of cDDP, N-acetyl- L-cysteine-cDDP (NAC-cDDP), in S(1), S(2), and S(3) segments of the rabbit proximal tubule. METHODS: Cellular accumulations and transport rates were determined using the isolated perfused tubule technique and samples were analyzed by ICP-MS. RESULTS: First, to establish the control data, each tubular segment was bathed in free cDDP (2 m M) which resulted in no observable toxicity. Next, TEA (4 m M) was added to the bathing solution containing cDDP. This resulted in a reduction in platinum J(B)(-->)(L) by approximately 75% in the S(1) segment and 50% in the S(2) and S(3) segments. C(Pt) was reduced by 80-90% in relation to control values with no observable changes in toxicity. In the next experiment, exposure of the basolateral membrane to NAC-cDDP (2 m M) elicited pronounced toxicity after 20-30 min of perfusion. The J(B)(-->)(L) for NAC-cDDP was similar for each of the three nephron segments. There were no significant differences in the ability of these three segments to accumulate NAC-cDDP, but the conjugate increased uptake of platinum by 200-300% in the S(1) and S(2) segments, with no significant change in the S(3) segments, compared cDDP control values. The presence of PAH (4 m M) in the bathing solution significantly reduced J(B)(-->)(L) (by approximately 90%) for NAC-cDDP in all segments and the C(Pt) by approximately 80%. This also abrogated the NAC-cDDP-induced toxicity. CONCLUSIONS: There was axial heterogeneity among the basolateral membranes of the S(1), S(2), and S(3) segments of the proximal tubule in accumulating free cDDP and transport of NAC-cDDP. Generally, the NAC-cDDP molecule was transported more avidly than free cDDP across the basolateral membrane, except in the S(3) segment, where accumulation was similar to that of free cDDP. It is concluded that a PAH-sensitive organic anion transporter is involved in the accumulation of NAC-cDDP at the basolateral membrane and a TEA-sensitive organic cation transport system is involved in the accumulation of free cDDP.


Assuntos
Acetilcisteína/metabolismo , Cisplatino/metabolismo , Tetraetilamônio/farmacologia , Ácido p-Aminoipúrico/farmacologia , Acetilcisteína/toxicidade , Animais , Transporte Biológico , Cisplatino/toxicidade , Túbulos Renais Proximais , Platina/análise , Platina/metabolismo , Coelhos
5.
J Toxicol Environ Health A ; 65(19): 1471-90, 2002 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-12396877

RESUMO

This study was designed to evaluate the effects of simultaneous coexposure to inorganic mercury and cadmium on the renal and hepatic disposition of each metal. Dispositional changes were assessed in rats 1 h and 24 h after the coexposure to relatively low doses of the metals (which individually are nonnephrotoxic in rats). The rational for studying mercury and cadmium is that both of these metals are encountered frequently in the same contaminated areas. Coadministration of a 0.5- micromol/kg dose of mercuric chloride with a 10- micromol/kg dose of cadmium chloride resulted in a decrease in the net renal accumulation of inorganic mercury at 1 and 24 h after exposure. Assessment of the disposition of both metals in renal zones indicates that the decreased renal accumulation of inorganic mercury was due specifically to changes in the accumulation of mercury in the renal cortex. Coexposure to inorganic mercury and cadmium also caused both the hepatic accumulation of mercury and the urinary excretion of mercury to increase during the initial 24 h after coexposure. During the initial 1 h after coexposure, the content of mercury in the blood was enhanced significantly. However, by the end of the first 24 h after exposure, the content of mercury in the blood was lower than that in animals treated with only inorganic mercury, likely due to the increased urinary excretion of mercury. Interestingly, with the exception of decreased fecal excretion of cadmium, no other changes in the disposition of cadmium were detected in the animals treated with both mercury and cadmium. These novel findings indicate that at the doses of inorganic mercury and cadmium used in the present study, cadmium has profound effects on the renal and hepatic handling of mercury. Based on the present findings, it appears that cadmium [by some currently unknown mechanism(s)] interferes with the luminal and/or basolateral uptake and/or net accumulation of mercury along S1 and S2 segments of the proximal tubules, which results in an overall decrease in the renal burden of mercury and an increased rate in the urinary excretion of mercury.


Assuntos
Cádmio/farmacocinética , Rim/metabolismo , Fígado/metabolismo , Mercúrio/farmacocinética , Animais , Cádmio/administração & dosagem , Combinação de Medicamentos , Interações Medicamentosas , Injeções Intravenosas , Masculino , Mercúrio/administração & dosagem , Ratos , Ratos Sprague-Dawley
6.
Toxicol Lett ; 213(2): 203-10, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22800651

RESUMO

Lumen-to-cell transport, cellular accumulation, and toxicity of L-cysteine (Cys), glutathione (GSH) and N-acetylcysteine (NAC) S-conjugates of methylmercury (CH(3)Hg(+)) were evaluated in isolated, perfused rabbit proximal tubular segments. When these conjugates were perfused individually through the lumen of S(2) segments of the proximal tubule it was found that Cys-S-CH(3)Hg and GSH-S-CH(3)Hg were transported avidly, while NAC-S-CH(3)Hg was transported minimally. In addition, 95% of the (203)Hg taken up by the tubular cells was associated with precipitable proteins of the tubule, while very little was found in the acid-soluble cytosol. No visual cellular pathological changes were observed during 30min of study. Luminal uptake of Cys-S-CH(3)Hg was temperature-dependent and inhibited significantly by the amino acids L-methionine and l-cystine. Rates of luminal uptake of GSH-S-CH(3)Hg were twice as great as that of Cys-S-CH(3)Hg and uptake was inhibited significantly (74%) by the presence of acivicin. When 2,3-bis(sulfanyl)propane-1-sulfonate (DMPS) was added to the bathing or luminal fluid, luminal uptake of Cys-S-CH(3)Hg was diminished significantly. Overall, our data indicate that Cys-S-CH(3)Hg is likely a transportable substrate of one or more amino acid transporters (such as system B(0,+) and system b(0,+)) involved in luminal absorption of L-methionine and L-cystine along the renal proximal tubule. In addition, GSH-S-CH(3)Hg appears to be degraded enzymatically to Cys-S-CH(3)Hg, which can then be taken up at the luminal membrane. By contrast NAC-S-CH(3)Hg and Cys-S-CH(3)Hg (in the presence of DMPS) are not taken up avidly at the luminal membrane of proximal tubular cells, thus promoting the excretion of CH(3)Hg(+) into the urine.


Assuntos
Acetilcisteína/farmacocinética , Cisteína/farmacocinética , Glutationa/farmacocinética , Túbulos Renais Proximais/metabolismo , Compostos de Metilmercúrio/farmacocinética , Acetilcisteína/análogos & derivados , Animais , Transporte Biológico , Cisteína/análogos & derivados , Feminino , Glutationa/análogos & derivados , Técnicas In Vitro , Isoxazóis/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Coelhos , Unitiol/farmacologia
7.
Toxicol Lett ; 193(1): 61-8, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20018233

RESUMO

UNLABELLED: Lumen-to-cell transport, cellular accumulation, and toxicity of cadmium as ionic cadmium (Cd(2+)) or as the L-cysteine (Cys) or D,L-homocysteine (Hcy) S-conjugate of cadmium (Cys-S-Cd-S-Cys, Hcy-S-Cd-S-Hcy) were studied in isolated, perfused rabbit proximal tubular segments. When Cd(2+) (0.73 microM) or Cys-S-Cd-S-Cys (0.73 microM) was perfused through the lumen of S(2) segments of the proximal tubule, no visual evidence of cellular pathological changes was detected during 30 min of study. Cd(2+)-transport was temperature-dependent and was inhibited by Fe(2+), Zn(2+), and elevated concentrations of Ca(2+). Luminal uptake of Cys-S-Cd-S-Cys was also temperature-dependent and was inhibited by the amino acids L-cystine and L-arginine, while stimulated by L-methionine. Neither L-aspartate, L-glutamate, the synthetic dipeptide, Gly-Sar nor Zn(2+) had any effect on the rate of Cys-S-Cd-S-Cys transport. CONCLUSIONS: When delivered to the luminal compartment, Cd(2+) appears to be capable of utilizing certain transporter(s) of Zn(2+) and some transport systems sensitive to Ca(2+) and Fe(2+). In addition, Cys-S-Cd-S-Cys and Hcy-S-Cd-S-Hcy appear to be transportable substrates of one or more amino acid transporters participating in luminal absorption of the amino acid L-cystine (such as system b(0,+)). These findings indicate that multiple mechanisms could be involved in the luminal absorption of cadmium (Cd) in proximal tubular segments depending on its form. These findings provide a focus for future studies of Cd absorption in the proximal tubule.


Assuntos
Cádmio/metabolismo , Túbulos Renais Proximais/metabolismo , Absorção , Animais , Arginina/farmacologia , Cálcio/farmacologia , Células Cultivadas , Cistina/farmacologia , Feminino , Homocisteína/metabolismo , Técnicas In Vitro , Ferro/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Perfusão , Coelhos , Temperatura , Zinco/farmacologia
8.
Am J Physiol Renal Physiol ; 283(6): F1208-15, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12388405

RESUMO

In the first of two sets of experiments, the lumen-to-cell and cell-to-bath transport rates for glycine were measured in the isolated-perfused medullary pars recta (S3 cells) of the rabbit proximal tubule at multiple luminal glycine concentrations (0-2.0 mM). The lumen-to-cell transport of glycine was saturated, which permitted the calculation of the transport maximum of disappearance rate of glycine from the lumen (pmol.min(-1).mm tubular length(-1)), K(m) (mM), and paracellular leak (pmol.min(-1).mm tubular length(-1).mM(-1)) values for this transport mechanism; these values were 4.3, 0.3, and 0.03, respectively. The cell-to-bath transport did not saturate but showed a linear relationship to cellular glycine concentration, 0.58 pmol.min(-1).mm tubular length(-1).mM(-1). The second set of experiments characterized the transport rate, cellular accumulation, and metabolic rate of lumen-to-cell transported [(3)H]glycine in all segments (cell types) of the proximal tubule, pars convoluta (S1 cells), cortical pars recta (S2 cells), and medullary pars recta (S3 cells). These proximal tubular segments were isolated and perfused at a single glycine concentration of 11.2 microM. From the results of this study and previous work (Barfuss DW and Schafer JA. Am J Physiol 236: F149-F162, 1979), we conclude that the axial heterogeneity for glycine lumen-to-cell and cell-to-bath transport capacity extends to the medullary pars recta (S3 cells; S1 > S2 < S3 for lumen-to-cell transport and S1 > S2 > S3 for cell-to-bath transport). Also, we conclude that lumen-to-cell transported glycine can be metabolized and its metabolic rate displays axial heterogeneity (S1 > S2 > S3). The physiological significances of these transport and metabolic characteristics of the S3 cell type permits the medullary pars recta to effectively recover glycine from very low luminal glycine concentrations and makes glycine available for protective and maintenance metabolism of the medullary pars recta.


Assuntos
Glicina/metabolismo , Túbulos Renais Proximais/metabolismo , Animais , Transporte Biológico , Células Epiteliais/metabolismo , Técnicas In Vitro , Túbulos Renais Proximais/citologia , Coelhos
9.
Toxicol Appl Pharmacol ; 182(3): 234-43, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12183103

RESUMO

The basolateral handling of 20 microM inorganic mercury (Hg(2+)), in the form of mercuric conjugates of cysteine (Cys), N-acetylcysteine (NAC), or glutathione (GSH), was studied in isolated perfused S2 segments of the rabbit proximal tubule. One of the primary aims of the present study was to determine in a direct manner whether basolateral uptake of Hg(++) occurs in the pars recta of the proximal tubule and, more importantly, whether the p-aminohippurate-sensitive (PAH) organic anion transport system is involved in this process. Basolateral uptake and accumulation of Hg(++) occurred when the basolateral membrane of the tubular segments was exposed to mercuric conjugates of Cys, NAC, or GSH. Net basolateral uptake of Hg(++) was more than twice as great in the tubules exposed to mercuric conjugates of Cys or NAC than in the tubules exposed to mercuric conjugates of GSH, indicating that mercuric conjugates of Cys or NAC are transported more efficiently than mercuric conjugates of GSH. When PAH (1 mM) was added to the basolateral compartment (bath) surrounding a perfused S2 segment, the net uptake of Hg(++) (in the form of the mercuric conjugates) was reduced by 60-70%. In addition, when glutarate (4 mM), a transportable substrate for both the sodium-dependent dicarboxylate transporter and the dicarboxylate/organic anion exchanger (OAT1), was added to the basolateral compartment, there was a significant reduction in the uptake and accumulation of Hg(++) in the form of mercuric conjugates of Cys. Overall, these data indicate that Hg(++), in the form of biologically relevant mercuric conjugates of Cys, NAC, or GSH, is taken up significantly at the basolateral membrane of pars recta segments of the proximal tubule, and this uptake is mediated mainly by the actions of the PAH-sensitive organic anion transport system.


Assuntos
Túbulos Renais Proximais/metabolismo , Mercúrio/farmacocinética , Transportadores de Ânions Orgânicos/metabolismo , Acetilcisteína/farmacocinética , Animais , Cisteína/farmacocinética , Feminino , Glutationa/farmacocinética , Técnicas In Vitro , Transporte de Íons , Mercúrio/toxicidade , Coelhos , Organismos Livres de Patógenos Específicos , Ácido p-Aminoipúrico/farmacocinética
10.
J Am Soc Nephrol ; 11(3): 394-402, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10703663

RESUMO

The aim of this study was to define mechanisms involved in the luminal uptake of inorganic mercury in the kidney using isolated perfused straight (S2) segments of the proximal tubule. When mercuric conjugates of glutathione (GSH), cysteinylglycine. or cysteine (containing 203Hg2+) were perfused through the lumen, the rates of luminal disappearance flux (JD) of inorganic mercury were approximately 39, 53, and 102 fmol/min per' min, respectively. Thus, the rates of luminal uptake of mercury are greater when the mercury is in the form of a mercuric conjugate of cysteine than in the form of a mercuric conjugate of cysteinylglycine or GSH. Addition of acivicin to the perfusate, to inhibit activity of the y-glutamyltransferase, caused significant reductions in the J,, for mercury in tubules perfused with mercuric conjugates of GSH. Addition of cilastatin, an inhibitor of dehydropeptidase- l (cysteinylglycinase) activity, caused significant reductions in the uptake of mercury in tubules perfused with mercuric conjugates of cysteinylglycine. These findings indicate that a significant amount of the luminal uptake of mercury, when mercuric conjugates of GSH are present in the lumen, is dependent on the activity of both y-glutamyltransferase and cysteinylglycinase. Finally, the JD for mercury in tubules perfused with mercuric conjugates of cysteine was reduced by approximately 50% when 3.0 mM L-lysine or 5.0 mM cycloleucine was added to the perfusate. It is concluded that these findings indicate that at least some of the luminal uptake of mercuric conjugates of cysteine occurs at the site of one or more amino acid transporters via a mechanism involving molecular homology.


Assuntos
Túbulos Renais Proximais/metabolismo , Mercúrio/farmacocinética , Animais , Cilastatina/farmacologia , Cisteína/fisiologia , Dipeptidases/antagonistas & inibidores , Dipeptidases/fisiologia , Inibidores Enzimáticos/farmacologia , Feminino , Glutationa/farmacocinética , Técnicas In Vitro , Isoxazóis/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Coelhos , Homologia de Sequência de Aminoácidos , gama-Glutamiltransferase/antagonistas & inibidores , gama-Glutamiltransferase/fisiologia
11.
J Am Soc Nephrol ; 11(6): 1008-1015, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10820164

RESUMO

Lumen-to-bath and bath-to-lumen transport rates of glutathione (GSH) were measured in isolated perfused S(1), S(2), and S(3) segments of the rabbit proximal tubule. In lumen-to-bath experiments, the perfusion solution contained 4.6 microM (3)H-GSH with or without 1.0 mM acivicin. In all three segments perfused without acivicin, luminal disappearance rate (J(DL)) and bath appearance rate (J(AB)) of (3)H-GSH were 14.5 +/- 0.5 and 2.2 +/- 0.8 fmol/min per mm tubule length, respectively. With acivicin present, J(DL) and J(AB) were reduced to 1.3 +/- 0.4 and 0.5 +/- 0.3, respectively, with no differences among segments. Cellular concentrations of (3)H-GSH in S(1), S(2), and S(3) segments when acivicin was absent were 23.1 +/- 2.0, 31.7 +/- 11.4, and 143.5 +/- 17.9 microM, respectively. With acivicin in perfusate, cellular concentrations were reduced but there was no change in the heterogeneity profile. In bath-to-lumen transport experiments (S(2) segments only), the bathing solution contained 2.3 microM (3)H-GSH. (3)H-GSH appearance in the lumen (J(AL), fmol/min per mm) and cellular accumulation from the bath were studied with and without acivicin in the perfusate. J(AL) values were 3.0 +/- 0.2 and 0.2 +/- 0.03 while cellular concentrations were 9.5 +/- 1.0 and 6.1 +/- 0.5 microM, respectively. It is concluded that: (1) GSH is primarily removed from the luminal fluid after degradation to glycine, cysteine, and glutamate, which are absorbed; (2) GSH can be absorbed intact at the luminal membrane; (3) the S(3) segment has the greatest GSH cellular concentration because its basolateral membrane has less capacity for cell-to-bath transport of GSH; and (4) GSH can be secreted intact from the peritubular compartment into the tubular lumen.


Assuntos
Glutationa/metabolismo , Túbulos Renais Proximais/metabolismo , Análise de Variância , Animais , Transporte Biológico , Cromatografia Líquida de Alta Pressão , Feminino , Técnicas In Vitro , Perfusão , Coelhos , Trítio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa