Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(34): e2210924120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579147

RESUMO

The origin and early evolution of life is generally studied under two different paradigms: bottom up and top down. Prebiotic chemistry and early Earth geochemistry allow researchers to explore possible origin of life scenarios. But for these "bottom-up" approaches, even successful experiments only amount to a proof of principle. On the other hand, "top-down" research on early evolutionary history is able to provide a historical account about ancient organisms, but is unable to investigate stages that occurred during and just after the origin of life. Here, we consider ancient electron transport chains (ETCs) as a potential bridge between early evolutionary history and a protocellular stage that preceded it. Current phylogenetic evidence suggests that ancestors of several extant ETC components were present at least as late as the last universal common ancestor of life. In addition, recent experiments have shown that some aspects of modern ETCs can be replicated by minerals, protocells, or organic cofactors in the absence of biological proteins. Here, we discuss the diversity of ETCs and other forms of chemiosmotic energy conservation, describe current work on the early evolution of membrane bioenergetics, and advocate for several lines of research to enhance this understanding by pairing top-down and bottom-up approaches.


Assuntos
Fenômenos Bioquímicos , Filogenia , Transporte de Elétrons , Proteínas/química , Metabolismo Energético , Origem da Vida , Evolução Biológica , Evolução Molecular
2.
Phys Chem Chem Phys ; 25(44): 30469-30476, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37921059

RESUMO

Chemical gardens, self-assembling precipitates that spontaneously form when a metal salt is added to a solution of another precipitating anion, are of interest for various applications including producing reactive materials in controlled structures. Here, we report on two chemical garden reaction systems (CuCl2 and Cu(NO3)2 seed crystals submerged in sodium silicate) that produced self-assembled microfluidic labyrinths in a vertical 2D Hele-Shaw reactor. The formation of labyrinths as well as the specific growth modes of the precipitate were dependent on the silicate concentration: CuCl2 labyrinths formed only at 3 and 4 M silicate and Cu(NO3)2 labyrinths formed only at 4 and 5 M silicate. The labyrinth structures contained silicate on the exterior and crystalline material interpreted as hydrated minerals from the metal salt in their interiors. The bubble-guided tubes that form labyrinths can be controlled by changing the angle of the 2D reaction cell; this suggests that future experiments of this type could form self-organizing structures with controlled composition and orientation for use in microfluidics and various materials science applications.

3.
Proc Natl Acad Sci U S A ; 117(37): 22873-22879, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32900930

RESUMO

All life on Earth is built of organic molecules, so the primordial sources of reduced carbon remain a major open question in studies of the origin of life. A variant of the alkaline-hydrothermal-vent theory for life's emergence suggests that organics could have been produced by the reduction of CO2 via H2 oxidation, facilitated by geologically sustained pH gradients. The process would be an abiotic analog-and proposed evolutionary predecessor-of the Wood-Ljungdahl acetyl-CoA pathway of modern archaea and bacteria. The first energetic bottleneck of the pathway involves the endergonic reduction of CO2 with H2 to formate (HCOO-), which has proven elusive in mild abiotic settings. Here we show the reduction of CO2 with H2 at room temperature under moderate pressures (1.5 bar), driven by microfluidic pH gradients across inorganic Fe(Ni)S precipitates. Isotopic labeling with 13C confirmed formate production. Separately, deuterium (2H) labeling indicated that electron transfer to CO2 does not occur via direct hydrogenation with H2 but instead, freshly deposited Fe(Ni)S precipitates appear to facilitate electron transfer in an electrochemical-cell mechanism with two distinct half-reactions. Decreasing the pH gradient significantly, removing H2, or eliminating the precipitate yielded no detectable product. Our work demonstrates the feasibility of spatially separated yet electrically coupled geochemical reactions as drivers of otherwise endergonic processes. Beyond corroborating the ability of early-Earth alkaline hydrothermal systems to couple carbon reduction to hydrogen oxidation through biologically relevant mechanisms, these results may also be of significance for industrial and environmental applications, where other redox reactions could be facilitated using similarly mild approaches.


Assuntos
Dióxido de Carbono/química , Ciclo do Carbono , Transporte de Elétrons , Hidrogênio/química , Concentração de Íons de Hidrogênio , Fontes Hidrotermais/química , Oxirredução , Força Próton-Motriz
4.
Proc Natl Acad Sci U S A ; 116(11): 4828-4833, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804197

RESUMO

Iron oxyhydroxide minerals, known to be chemically reactive and significant for elemental cycling, are thought to have been abundant in early-Earth seawater, sediments, and hydrothermal systems. In the anoxic Fe2+-rich early oceans, these minerals would have been only partially oxidized and thus redox-active, perhaps able to promote prebiotic chemical reactions. We show that pyruvate, a simple organic molecule that can form in hydrothermal systems, can undergo reductive amination in the presence of mixed-valence iron oxyhydroxides to form the amino acid alanine, as well as the reduced product lactate. Furthermore, geochemical gradients of pH, redox, and temperature in iron oxyhydroxide systems affect product selectivity. The maximum yield of alanine was observed when the iron oxyhydroxide mineral contained 1:1 Fe(II):Fe(III), under alkaline conditions, and at moderately warm temperatures. These represent conditions that may be found, for example, in iron-containing sediments near an alkaline hydrothermal vent system. The partially oxidized state of the precipitate was significant in promoting amino acid formation: Purely ferrous hydroxides did not drive reductive amination but instead promoted pyruvate reduction to lactate, and ferric hydroxides did not result in any reaction. Prebiotic chemistry driven by redox-active iron hydroxide minerals on the early Earth would therefore be strongly affected by geochemical gradients of Eh, pH, and temperature, and liquid-phase products would be able to diffuse to other conditions within the sediment column to participate in further reactions.

5.
Orig Life Evol Biosph ; 51(3): 185-213, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34279769

RESUMO

How life arose on the primitive Earth is one of the biggest questions in science. Biomolecular emergence scenarios have proliferated in the literature but accounting for the ubiquity of oxidized (+ 5) phosphate (PO43-) in extant biochemistries has been challenging due to the dearth of phosphate and molecular oxygen on the primordial Earth. A compelling body of work suggests that exogenous schreibersite ((Fe,Ni)3P) was delivered to Earth via meteorite impacts during the Heavy Bombardment (ca. 4.1-3.8 Gya) and there converted to reduced P oxyanions (e.g., phosphite (HPO32-) and hypophosphite (H2PO2-)) and phosphonates. Inspired by this idea, we review the relevant literature to deduce a plausible reduced phospholipid analog of modern phosphatidylcholines that could have emerged in a primordial hydrothermal setting. A shallow alkaline lacustrine basin underlain by active hydrothermal fissures and meteoritic schreibersite-, clay-, and metal-enriched sediments is envisioned. The water column is laden with known and putative primordial hydrothermal reagents. Small system dimensions and thermal- and UV-driven evaporation further concentrate chemical precursors. We hypothesize that a reduced phospholipid arises from Fischer-Tropsch-type (FTT) production of a C8 alkanoic acid, which condenses with an organophosphinate (derived from schreibersite corrosion to hypophosphite with subsequent methylation/oxidation), to yield a reduced protophospholipid. This then condenses with an α-amino nitrile (derived from Strecker-type reactions) to form the polar head. Preliminary modeling results indicate that reduced phospholipids do not aggregate rapidly; however, single layer micelles are stable up to aggregates with approximately 100 molecules.


Assuntos
Meteoroides , Fósforo , Planeta Terra , Fosfatos , Fosfolipídeos
6.
Langmuir ; 36(21): 5793-5801, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32421344

RESUMO

Understanding the structure and behavior of chemical gardens is of interest for materials science, for understanding organic-mineral interactions, and for simulating geological mineral structures in hydrothermal systems on Earth and other worlds. Herein, we explored the effects of amino acids on inorganic chemical garden precipitate systems of iron chloride and sodium silicate to determine if/how the addition of organics can affect self-assembling morphologies or crystal growth. Amino acids affect chemical garden growth and morphology at the macro-scale and at the nanoscale. In this reaction system, the concentration of amino acid had a greater impact than the amino acid side chain, and increasing concentrations of organics caused structures to have smoother exteriors as amino acids accumulated on the outside surface. These results provide an example of how organic compounds can become incorporated into and influence the growth of inorganic self-organizing precipitates in far-from-equilibrium systems. Additionally, sample handing methods were developed to successfully image these delicate structures.

7.
Orig Life Evol Biosph ; 50(1-2): 35-55, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31981046

RESUMO

Understanding the emergence of metabolic pathways is key to unraveling the factors that promoted the origin of life. One popular view is that protein cofactors acted as catalysts prior to the evolution of the protein enzymes with which they are now associated. We investigated the stability of acetyl coenzyme A (Acetyl Co-A, the group transfer cofactor in citric acid synthesis in the TCA cycle) under early Earth conditions, as well as whether Acetyl Co-A or its small molecule analogs thioacetate or acetate can catalyze the transfer of an acetyl group onto oxaloacetate in the absence of the citrate synthase enzyme. Several different temperatures, pH ranges, and compositions of aqueous environments were tested to simulate the Earth's early ocean and its possible components; the effect of these variables on oxaloacetate and cofactor chemistry were assessed under ambient and anoxic conditions. The cofactors tested are chemically stable under early Earth conditions, but none of the three compounds (Acetyl Co-A, thioacetate, or acetate) promoted synthesis of citric acid from oxaloacetate under the conditions tested. Oxaloacetate reacted with itself and/or decomposed to form a sequence of other products under ambient conditions, and under anoxic conditions was more stable; under ambient conditions the specific chemical pathways observed depended on the environmental conditions such as pH and presence/absence of bicarbonate or salt ions in early Earth ocean simulants. This work demonstrates the stability of these metabolic intermediates under anoxic conditions. However, even though free cofactors may be stable in a geological environmental setting, an enzyme or other mechanism to promote reaction specificity would likely be necessary for at least this particular reaction to proceed.


Assuntos
Acetatos/química , Acetilcoenzima A/química , Citrato (si)-Sintase/química , Ácido Oxaloacético/química , Compostos de Sulfidrila/química , Catálise , Planeta Terra
8.
Chemistry ; 25(18): 4732-4739, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30725519

RESUMO

Pyrophosphate might have functioned as an energy storage/currency molecule on early Earth, essential for the emergence of life. Here we synthesized mineral membranes involving iron(II), iron(III), and other divalent metal cations (calcium, manganese, cobalt, copper, zinc, and nickel) and tested their ability to catalyze the formation of pyrophosphate from phosphate and acetyl phosphate across steep pH gradients in microfluidic devices. We studied the chemical compositions of the precipitate membranes (which included vivianite, goethite, and green rust) using in situ and ex situ micro-Raman spectroscopy. The yields of pyrophosphate were determined by aqueous 31 P NMR spectroscopy. We found that Fe2+ and Ca2+ were the best catalysts for pyrophosphate synthesis among investigated ions; Fe3+ and mixed-valence iron membranes were also able to promote pyrophosphate formation. In addition, the pH gradients across the membranes affected the pyrophosphate yields and the smallest pH gradient resulted in the highest yield. These results suggest a possible route of substrate phosphorylation in prebiotic hydrothermal systems.

9.
Orig Life Evol Biosph ; 48(3): 321-330, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30203410

RESUMO

Carbonaceous meteorites contributed polycyclic aromatic hydrocarbons (PAHs) to the organic inventory of the primordial Earth where they may have reacted on catalytic clay mineral surfaces to produce quinones capable of functioning as redox species in emergent biomolecular systems. To address the feasibility of this hypothesis, we assessed the kinetics of anthracene (1) conversion to 9,10-anthraquinone (2) in the presence of montmorillonite clay (MONT) over the temperature range 25 to 250 °C. Apparent rates of conversion were concentration independent and displayed a sigmoidal relationship with temperature, and conversion efficiencies ranged from 0.027 to 0.066%. Conversion was not detectable in the absence of MONT or a sufficiently high oxidation potential (in this case, molecular oxygen (O2)). These results suggest a scenario in which meteoritic 1 and MONT interactions could yield biologically important quinones in prebiotic planetary environments.


Assuntos
Antracenos/química , Antraquinonas/química , Bentonita/química , Hidrocarbonetos Policíclicos Aromáticos/química , Catálise , Química Inorgânica , Argila/química , Cinética , Origem da Vida , Temperatura
10.
Angew Chem Int Ed Engl ; 54(28): 8184-7, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968422

RESUMO

We examine the electrochemical gradients that form across chemical garden membranes and investigate how self-assembling, out-of-equilibrium inorganic precipitates-mimicking in some ways those generated in far-from-equilibrium natural systems-can generate electrochemical energy. Measurements of electrical potential and current were made across membranes precipitated both by injection and solution interface methods in iron-sulfide and iron-hydroxide reaction systems. The battery-like nature of chemical gardens was demonstrated by linking multiple experiments in series which produced sufficient electrical energy to light an external light-emitting diode (LED). This work paves the way for determining relevant properties of geological precipitates that may have played a role in hydrothermal redox chemistry at the origin of life, and materials applications that utilize the electrochemical properties of self-organizing chemical systems.

11.
Astrobiology ; 24(3): 328-338, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507694

RESUMO

Enceladus is of interest to astrobiology and the search for life since it is thought to host active hydrothermal activity and habitable conditions. It is also possible that the organics detected on Enceladus may indicate an active prebiotic or biotic system; in particular, the conditions on Enceladus may favor mineral-driven protometabolic reactions. When including metabolism-related biosignatures in Enceladus mission concepts, it is necessary to base these in a clearer understanding of how these signatures could also be produced prebiotically. In addition, postulating which biological metabolisms to look for on Enceladus requires a non-Earth-centric approach since the details of biological metabolic pathways are heavily shaped by adaptation to geochemical conditions over the planet's history. Creating metabolism-related organic detection objectives for Enceladus missions, therefore, requires consideration of how metabolic systems may operate differently on another world, while basing these speculations on observed Earth-specific microbial processes. In addition, advances in origin-of-life research can play a critical role in distinguishing between interpretations of any future organic detections on Enceladus, and the discovery of an extant prebiotic system would be a transformative astrobiological event in its own right.


Assuntos
Planeta Terra , Exobiologia
12.
Astrobiology ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768415

RESUMO

Pigments serve a multitude of functions in biology including light harvesting for photosynthesis, radiation protection, membrane support, and defense. The ubiquity of pigments-especially within extremophiles found in high-radiation, high-salinity, and dry environments-and their detectability via mission-ready techniques have elevated these molecules as promising targets in the search for evidence of life elsewhere. Moreover, the detection of pigments has been proposed as a "smoking gun" for extraterrestrial life as it has been suggested that these molecules cannot be generated abiotically. However, while pigments may hold promise as a biosignature, current understanding of their possible prebiotic origins remains understudied and uncertain. Better understanding of the abiotic synthesis of pigments is critical for evaluating the biogenicity of any pigment detected during missions, including by the Mars Perseverance rover or from returned samples. Compounding this uncertainty is the broad definition of pigment as it includes any compound capable of absorbing visible light and by itself does not specify a particular chemical motif. While not experimentally verified, there are promising prebiotic routes for generating pigments including hemes, chlorophylls, and carotenoids. Herein, we review the biochemistry of pigments, the inherent assumptions made when searching for these molecules in the field, their abiotic synthesis in industry and prebiotic reactions, prebiotically relevant molecules that can mimic their spectral signatures, and implications/recommendations for future work.

13.
Astrobiology ; 24(1): 114-129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227837

RESUMO

The 2-week, virtual Future of the Search for Life science and engineering workshop brought together more than 100 scientists, engineers, and technologists in March and April 2022 to provide their expert opinion on the interconnections between life-detection science and technology. Participants identified the advances in measurement and sampling technologies they believed to be necessary to perform in situ searches for life elsewhere in our Solar System, 20 years or more in the future. Among suggested measurements for these searches, those pertaining to three potential indicators of life termed "dynamic disequilibrium," "catalysis," and "informational polymers" were identified as particularly promising avenues for further exploration. For these three indicators, small breakout groups of participants identified measurement needs and knowledge gaps, along with corresponding constraints on sample handling (acquisition and processing) approaches for a variety of environments on Enceladus, Europa, Mars, and Titan. Despite the diversity of these environments, sample processing approaches all tend to be more complex than those that have been implemented on missions or envisioned for mission concepts to date. The approaches considered by workshop breakout groups progress from nondestructive to destructive measurement techniques, and most involve the need for fluid (especially liquid) sample processing. Sample processing needs were identified as technology gaps. These gaps include technology and associated sampling strategies that allow the preservation of the thermal, mechanical, and chemical integrity of the samples upon acquisition; and to optimize the sample information obtained by operating suites of instruments on common samples. Crucially, the interplay between science-driven life-detection strategies and their technological implementation highlights the need for an unprecedented level of payload integration and extensive collaboration between scientists and engineers, starting from concept formulation through mission deployment of life-detection instruments and sample processing systems.


Assuntos
Júpiter , Marte , Saturno , Humanos , Meio Ambiente Extraterreno , Exobiologia/métodos
14.
Life (Basel) ; 13(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37629583

RESUMO

Enceladus and Europa, icy moons of Saturn and Jupiter, respectively, are believed to be habitable with liquid water oceans and therefore are of interest for future life detection missions and mission concepts. With the limited data from missions to these moons, many studies have sought to better constrain these conditions. With these constraints, researchers have, based on modeling and experimental studies, hypothesized a number of possible metabolisms that could exist on Europa and Enceladus if these worlds host life. The most often hypothesized metabolisms are methanogenesis for Enceladus and methane oxidation/sulfate reduction on Europa. Here, we outline, review, and compare the best estimated conditions of each moon's ocean. We then discuss the hypothetical metabolisms that have been suggested to be present on these moons, based on laboratory studies and Earth analogs. We also detail different detection methods that could be used to detect these hypothetical metabolic reactions and make recommendations for future research and considerations for future missions.

15.
Langmuir ; 28(8): 3714-21, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22035594

RESUMO

Chemical gardens form when ferrous chloride hydrate seed crystals are added or concentrated solutions are injected into solutions of sodium silicate and potassium phosphate. Various precipitation morphologies are observed depending on silicate and phosphate concentrations, including hollow plumes, bulbs, and tubes. The growth of precipitates is controlled by the internal osmotic pressure, fluid buoyancy, and membrane strength. Additionally, rapid bubble-led growth is observed when silicate concentrations are high. ESEM/EDX analysis confirms compositional gradients within the membranes, and voltage measurements across the membranes during growth show a final potential of around 150-200 mV, indicating that electrochemical gradients are maintained across the membranes as growth proceeds. The characterization of chemical gardens formed with iron, silicate, and phosphate, three important components of an early earth prebiotic hydrothermal system, can help us understand the properties of analogous structures that likely formed at submarine alkaline hydrothermal vents in the Hadean-structures offering themselves as the hatchery of life.


Assuntos
Ferro/química , Fosfatos/química , Silicatos/química , Compostos Ferrosos/química , Fontes Hidrotermais/química
17.
Astrobiology ; 22(4): 481-493, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34898272

RESUMO

The field of prebiotic chemistry has demonstrated that complex organic chemical systems that exhibit various life-like properties can be produced abiotically in the laboratory. Understanding these chemical systems is important for astrobiology and life detection since we do not know the extent to which prebiotic chemistry might exist or have existed on other worlds. Nor do we know what signatures are diagnostic of an extant or "failed" prebiotic system. On Earth, biology has suppressed most abiotic organic chemistry and overprints geologic records of prebiotic chemistry; therefore, it is difficult to validate whether chemical signatures from future planetary missions are remnant or extant prebiotic systems. The "biosignature threshold" between whether a chemical signature is more likely to be produced by abiotic versus biotic chemistry on a given world could vary significantly, depending on the particular environment, and could change over time, especially if life were to emerge and diversify on that world. To interpret organic signatures detected during a planetary mission, we advocate for (1) gaining a more complete understanding of prebiotic/abiotic chemical possibilities in diverse planetary environments and (2) involving experimental prebiotic samples as analogues when generating comparison libraries for "life-detection" mission instruments.


Assuntos
Meio Ambiente Extraterreno , Planeta Terra , Exobiologia , Planetas
18.
Astrobiology ; 22(1): 25-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591607

RESUMO

Life emerged in a geochemical context, possibly in the midst of mineral substrates. However, it is not known to what extent minerals and dissolved inorganic ions could have facilitated the evolution of biochemical reactions. Herein, we have experimentally shown that iron sulfide minerals can act as electron transfer agents for the reduction of the ubiquitous biological protein cofactor nicotinamide adenine dinucleotide (NAD+) under anaerobic prebiotic conditions, observing the NAD+/NADH redox transition by using ultraviolet-visible spectroscopy and 1H nuclear magnetic resonance. This reaction was mediated with iron sulfide minerals, which were likely abundant on early Earth in seafloor and hydrothermal settings; and the NAD+/NADH redox reaction occurred in the absence of UV light, peptide ligand(s), or dissolved mediators. To better understand this reaction, thermodynamic modeling was also performed. The ability of an iron sulfide mineral to transfer electrons to a biochemical cofactor that is found in every living cell demonstrates how geologic materials could have played a direct role in the evolution of certain cofactor-driven metabolic pathways.


Assuntos
Ferro , NAD , Ferro/metabolismo , Minerais , NAD/química , NAD/metabolismo , Oxirredução , Enxofre
19.
Astrobiology ; 22(2): 197-209, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35100015

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrochemical environments and are disbursed into planetary environments via meteorites and extraterrestrial infall where they may interact with mineral phases to produce quinones important for origins of life. In this study, we assessed the potential of the phyllosilicates montmorillonite (MONT) and kaolinite (KAO), and the enhanced Mojave Mars Simulant (MMS) to convert the PAH anthracene (ANTH) to the biologically important 9,10-anthraquinone (ANTHQ). All studied mineral substrates mediate conversion over the temperature range assessed (25-500°C). Apparent rate curves for conversion were sigmoidal for MONT and KAO, but quadratic for MMS. Conversion efficiency maxima for ANTHQ were 3.06% ± 0.42%, 1.15% ± 0.13%, and 0.56% ± 0.039% for MONT, KAO, and MMS, respectively. We hypothesized that differential substrate binding and compound loss account for the apparent conversion kinetics observed. Apparent loss rate curves for ANTH and ANTHQ were exponential for all substrates, suggesting a pathway for wide distribution of both compounds in warmer prebiotic environments. These findings improve upon our previously reported ANTHQ conversion efficiency on MONT and provide support for a plausible scenario in which PAH-mineral interactions could have produced prebiotically relevant quinones in early Earth environments.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Quinonas , Bentonita , Minerais/química , Hidrocarbonetos Policíclicos Aromáticos/química , Quinonas/química
20.
J Vis Exp ; (168)2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33720128

RESUMO

Deep sea hydrothermal vents are self-organizing precipitates generated from geochemical disequilibria and have been proposed as a possible setting for the emergence of life. The growth of hydrothermal chimneys in a thermal gradient environment within an early Earth vent system was successfully simulated by using different hydrothermal simulants, such as sodium sulfide, which were injected into an early Earth ocean simulant containing dissolved ferrous iron. Moreover, an apparatus was developed to sufficiently cool the ocean simulant to near 0 °C in a condenser vessel immersed in a cold water bath while injecting a sulfide solution at hot to room temperatures, effectively creating an artificial chimney structure in a temperature gradient environment over a period of a few hours. Such experiments with different chemistries and variable temperature gradients resulted in a variety of morphologies in the chimney structure. The use of ocean and hydrothermal fluid simulants at room temperature resulted in vertical chimneys, whereas the combination of a hot hydrothermal fluid and cold ocean simulant inhibited the formation of robust chimney structures. The customizable 3D printed condenser created for this study acts as a jacketed reaction vessel that can be easily modified and used by different researchers. It will allow the careful control of injection rate and chemical composition of vent and ocean simulants, which should help accurately simulate prebiotic reactions in chimney systems with thermal gradients similar to those of natural systems.


Assuntos
Simulação por Computador , Planeta Terra , Fontes Hidrotermais , Temperatura , Oceanos e Mares , Impressão Tridimensional , Soluções
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa