Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Eur Heart J ; 45(18): 1602-1609, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38366191

RESUMO

Despite improvements in clinical outcomes following acute myocardial infarction, mortality remains high, especially in patients with severely reduced left ventricular ejection fraction (LVEF <30%), emphasizing the need for effective cardioprotective strategies adjunctive to recanalization. Traditional cell therapy has shown equivocal success, shifting the focus to innovative cardioactive biologicals and cell mimetic therapies, particularly extracellular vesicles (EVs). EVs, as carriers of non-coding RNAs and other essential biomolecules, influence neighbouring and remote cell function in a paracrine manner. Compared to cell therapy, EVs possess several clinically advantageous traits, including stability, ease of storage (enabling off-the-shelf clinical readiness), and decreased immunogenicity. Allogeneic EVs from mesenchymal and/or cardiac stromal progenitor cells demonstrate safety and potential efficacy in preclinical settings. This review delves into the translational potential of EV-based therapeutic approaches, specifically highlighting findings from large-animal studies, and offers a synopsis of ongoing early-stage clinical trials in this domain.


Assuntos
Vesículas Extracelulares , Infarto do Miocárdio , Infarto do Miocárdio/terapia , Vesículas Extracelulares/transplante , Vesículas Extracelulares/fisiologia , Humanos , Animais
2.
J Cell Mol Med ; 28(8): e18281, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652092

RESUMO

Conditions to which the cardiac graft is exposed during transplantation with donation after circulatory death (DCD) can trigger the recruitment of macrophages that are either unpolarized (M0) or pro-inflammatory (M1) as well as the release of extracellular vesicles (EV). We aimed to characterize the effects of M0 and M1 macrophage-derived EV administration on post-ischaemic functional recovery and glucose metabolism using an isolated rat heart model of DCD. Isolated rat hearts were subjected to 20 min aerobic perfusion, followed by 27 min global, warm ischaemia or continued aerobic perfusion and 60 min reperfusion with or without intravascular administration of EV. Four experimental groups were compared: (1) no ischaemia, no EV; (2) ischaemia, no EV; (3) ischaemia with M0-macrophage-dervied EV; (4) ischaemia with M1-macrophage-derived EV. Post-ischaemic ventricular and metabolic recovery were evaluated. During reperfusion, ventricular function was decreased in untreated ischaemic and M1-EV hearts, but not in M0-EV hearts, compared to non-ischaemic hearts (p < 0.05). In parallel with the reduced functional recovery in M1-EV versus M0-EV ischaemic hearts, rates of glycolysis from exogenous glucose and oxidative metabolism tended to be lower, while rates of glycogenolysis and lactate release tended to be higher. EV from M0- and M1-macrophages differentially affect post-ischaemic cardiac recovery, potentially by altering glucose metabolism in a rat model of DCD. Targeted EV therapy may be a useful approach for modulating cardiac energy metabolism and optimizing graft quality in the setting of DCD.


Assuntos
Vesículas Extracelulares , Transplante de Coração , Macrófagos , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Ratos , Macrófagos/metabolismo , Masculino , Transplante de Coração/métodos , Glucose/metabolismo , Miocárdio/metabolismo , Modelos Animais de Doenças , Recuperação de Função Fisiológica , Glicólise , Coração/fisiopatologia , Coração/fisiologia
3.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892376

RESUMO

Cardiovascular disease represents the foremost cause of mortality and morbidity worldwide, with a steadily increasing incidence due to the growth of the ageing population. Cardiac dysfunction leading to heart failure may arise from acute myocardial infarction (MI) as well as inflammatory- and cancer-related chronic cardiomyopathy. Despite pharmacological progress, effective cardiac repair represents an unmet clinical need, with heart transplantation being the only option for end-stage heart failure. The functional profiling of the biological activity of extracellular vesicles (EVs) has recently attracted increasing interest in the field of translational research for cardiac regenerative medicine. The cardioprotective and cardioactive potential of human progenitor stem/cell-derived EVs has been reported in several preclinical studies, and EVs have been suggested as promising paracrine therapy candidates for future clinical translation. Nevertheless, some compelling aspects must be properly addressed, including optimizing delivery strategies to meet patient needs and enhancing targeting specificity to the cardiac tissue. Therefore, in this review, we will discuss the most relevant aspects of the therapeutic potential of EVs released by human progenitors for cardiovascular disease, with a specific focus on the strategies that have been recently implemented to improve myocardial targeting and administration routes.


Assuntos
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Animais , Doenças Cardiovasculares/terapia , Medicina Regenerativa/métodos , Células-Tronco/metabolismo , Células-Tronco/citologia
4.
J Transl Med ; 21(1): 313, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161563

RESUMO

BACKGROUND: Exosomes (EXOs), tiny extracellular vesicles that facilitate cell-cell communication, are being explored as a heart failure treatment, although the features of the cell source restrict their efficacy. Fibroblasts the most prevalent non-myocyte heart cells, release poor cardioprotective EXOs. A noninvasive method for manufacturing fibroblast-derived exosomes (F-EXOs) that target cardiomyocytes and slow cardiac remodeling is expected. As a cardioprotective isothiocyanate, sulforaphane (SFN)-induced F-EXOs (SFN-F-EXOs) should recapitulate its anti-remodeling properties. METHODS: Exosomes from low-dose SFN (3 µM/7 days)-treated NIH/3T3 murine cells were examined for number, size, and protein composition. Fluorescence microscopy, RT-qPCR, and western blot assessed cell size, oxidative stress, AcH4 levels, hypertrophic gene expression, and caspase-3 activation in angiotensin II (AngII)-stressed HL-1 murine cardiomyocytes 12 h-treated with various EXOs. The uptake of fluorescently-labeled EXOs was also measured in cardiomyocytes. The cardiac function of infarcted male Wistar rats intramyocardially injected with different EXOs (1·1012) was examined by echocardiography. Left ventricular infarct size, hypertrophy, and capillary density were measured. RESULTS: Sustained treatment of NIH/3T3 with non-toxic SFN concentration significantly enhances the release of CD81 + EXOs rich in TSG101 (Tumor susceptibility gene 101) and Hsp70 (Heat Shock Protein 70), and containing maspin, an endogenous histone deacetylase 1 inhibitor. SFN-F-EXOs counteract angiotensin II (AngII)-induced hypertrophy and apoptosis in murine HL-1 cardiomyocytes enhancing SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a) levels more effectively than F-EXOs. In stressed cardiomyocytes, SFN-F-EXOs boost AcH4 levels by 30% (p < 0.05) and significantly reduce oxidative stress more than F-EXOs. Fluorescence microscopy showed that mouse cardiomyocytes take in SFN-F-EXOs ~ threefold more than F-EXOs. Compared to vehicle-injected infarcted hearts, SFN-F-EXOs reduce hypertrophy, scar size, and improve contractility. CONCLUSIONS: Long-term low-dose SFN treatment of fibroblasts enhances the release of anti-remodeling cardiomyocyte-targeted F-EXOs, which effectively prevent the onset of HF. The proposed method opens a new avenue for large-scale production of cardioprotective exosomes for clinical application using allogeneic fibroblasts.


Assuntos
Exossomos , Miócitos Cardíacos , Masculino , Ratos , Camundongos , Animais , Angiotensina II , Ratos Wistar , Fibroblastos , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Anticorpos
5.
Nephrol Dial Transplant ; 38(3): 764-777, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36073758

RESUMO

BACKGROUND: A long-standing effort is dedicated towards the identification of biomarkers allowing the prediction of graft outcome after kidney transplant. Extracellular vesicles (EVs) circulating in body fluids represent an attractive candidate, as their cargo mirrors the originating cell and its pathophysiological status. The aim of the study was to investigate EV surface antigens as potential predictors of renal outcome after kidney transplant. METHODS: We characterized 37 surface antigens by flow cytometry, in serum and urine EVs from 58 patients who were evaluated before, and at 10-14 days, 3 months and 1 year after transplant, for a total of 426 analyzed samples. The outcome was defined according to estimated glomerular filtration rate (eGFR) at 1 year. RESULTS: Endothelial cells and platelets markers (CD31, CD41b, CD42a and CD62P) in serum EVs were higher at baseline in patients with persistent kidney dysfunction at 1 year, and progressively decreased after kidney transplant. Conversely, mesenchymal progenitor cell marker (CD1c, CD105, CD133, SSEEA-4) in urine EVs progressively increased after transplant in patients displaying renal recovery at follow-up. These markers correlated with eGFR, creatinine and proteinuria, associated with patient outcome at univariate analysis and were able to predict patient outcome at receiver operating characteristics curves analysis. A specific EV molecular signature obtained by supervised learning correctly classified patients according to 1-year renal outcome. CONCLUSIONS: An EV-based signature, reflecting the cardiovascular profile of the recipient, and the repairing/regenerative features of the graft, could be introduced as a non-invasive tool for a tailored management of follow-up of patients undergoing kidney transplant.


Assuntos
Líquidos Corporais , Vesículas Extracelulares , Transplante de Rim , Humanos , Células Endoteliais , Rim , Biomarcadores/urina , Taxa de Filtração Glomerular
6.
Brain ; 145(8): 2755-2768, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35485527

RESUMO

Abnormal accumulation of microtubule-associated protein tau (τ) is a characteristic feature of atypical parkinsonisms with tauopathies, such as progressive supranuclear palsy and corticobasal degeneration. However, pathological τ has also been observed in α-synucleinopathies like Parkinson's disease and multiple system atrophy. Based on the involvement of the peripheral nervous system in several neurodegenerative diseases, we characterized and compared τ expression in skin biopsies of patients clinically diagnosed with Parkinson's disease, multiple system atrophy, progressive supranuclear palsy and corticobasal degeneration and in healthy control subjects. In all groups, τ protein was detected along both somatosensory and autonomic nerve fibres in the epidermis and dermis by immunofluorescence. We found by western blot the presence of mainly two different bands at 55 and 70 kDa, co-migrating with 0N4R/1N3R and 2N4R isoforms, respectively. At the RNA level, the main transcript variants were 2N and 4R, and both were more expressed in progressive supranuclear palsy/corticobasal degeneration by real-time PCR. Enzyme-linked immunosorbent assay demonstrated significantly higher levels of total τ protein in skin lysates of progressive supranuclear palsy/corticobasal degeneration compared to the other groups. Multivariate regression analysis and receiver operating characteristics curve analysis of τ amount at both sites showed a clinical association with tauopathies diagnosis and high diagnostic value for progressive supranuclear palsy/corticobasal degeneration versus Parkinson's disease (sensitivity 90%, specificity 69%) and progressive supranuclear palsy/corticobasal degeneration versus multiple system atrophy (sensitivity 90%, specificity 86%). τ protein increase correlated with cognitive impairment in progressive supranuclear palsy/corticobasal degeneration. This study is a comprehensive characterization of τ in the human cutaneous peripheral nervous system in physiological and pathological conditions. The differential expression of τ, both at transcript and protein levels, suggests that skin biopsy, an easily accessible and minimally invasive exam, can help in discriminating among different neurodegenerative diseases.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Paralisia Supranuclear Progressiva , Sinucleinopatias , Tauopatias , Biópsia , Humanos , Proteínas tau
7.
Stroke ; 52(10): 3335-3347, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34344167

RESUMO

Background and Purpose: Extracellular vesicles (EVs) are promising biomarkers for cerebral ischemic diseases, but not systematically tested in patients with transient ischemic attacks (TIAs). We aimed at (1) investigating the profile of EV-surface antigens in patients with symptoms suspicious for TIA; (2) developing and validating a predictive model for TIA diagnosis based on a specific EV-surface antigen profile. Methods: We analyzed 40 subjects with symptoms suspicious for TIA and 20 healthy controls from a training cohort. An independent cohort of 28 subjects served as external validation. Patients were stratified according to likelihood of having a real ischemic event using the Precise Diagnostic Score, defined as: unlikely (score 0­1), possible-probable (score 2­3), or very likely (score 4­8). Serum vesicles were quantified by nanoparticle tracking analysis and EV-surface antigen profile characterized by multiplex flow cytometry. Results: EV concentration increased in patients with very likely or possible-probable TIA (P<0.05) compared with controls. Nanoparticle concentration was directly correlated with the Precise Diagnostic score (R=0.712; P<0.001). After EV immuno-capturing, CD8, CD2, CD62P, melanoma-associated chondroitin sulfate proteoglycan, CD42a, CD44, CD326, CD142, CD31, and CD14 were identified as discriminants between groups. Receiver operating characteristic curve analysis confirmed a reliable diagnostic performance for each of these markers taken individually and for a compound marker derived from their linear combinations (area under the curve, 0.851). Finally, a random forest model combining the expression levels of selected markers achieved an accuracy of 96% and 78.9% for discriminating patients with a very likely TIA, in the training and external validation cohort, respectively. Conclusions: The EV-surface antigen profile appears to be different in patients with transient symptoms adjudicated to be very likely caused by brain ischemia compared with patients whose symptoms were less likely to due to brain ischemia. We propose an algorithm based on an EV-surface-antigen specific signature that might aid in the recognition of TIA.


Assuntos
Antígenos de Superfície/análise , Vesículas Extracelulares/patologia , Ataque Isquêmico Transitório/diagnóstico , Ataque Isquêmico Transitório/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Estudos de Coortes , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Nanopartículas/análise , Estudos Prospectivos , Curva ROC , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
J Cell Mol Med ; 24(7): 3795-3806, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32155321

RESUMO

Acute myocardial infarction causes lethal injury to cardiomyocytes during both ischaemia and reperfusion (IR). It is important to define the precise mechanisms by which they die in order to develop strategies to protect the heart from IR injury. Necrosis is known to play a major role in myocardial IR injury. There is also evidence for significant myocardial death by other pathways such as apoptosis, although this has been challenged. Mitochondria play a central role in both of these pathways of cell death, as either a causal mechanism is the case of mitochondrial permeability transition leading to necrosis, or as part of the signalling pathway in mitochondrial cytochrome c release and apoptosis. Autophagy may impact this process by removing dysfunctional proteins or even entire mitochondria through a process called mitophagy. More recently, roles for other programmed mechanisms of cell death such as necroptosis and pyroptosis have been described, and inhibitors of these pathways have been shown to be cardioprotective. In this review, we discuss both mitochondrial and mitochondrial-independent pathways of the major modes of cell death, their role in IR injury and their potential to be targeted as part of a cardioprotective strategy. This article is part of a special Issue entitled 'Mitochondria as targets of acute cardioprotection' and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.


Assuntos
Mitocôndrias/genética , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/genética , Miocárdio/metabolismo , Apoptose/genética , Autofagia/genética , Morte Celular/genética , Humanos , Mitocôndrias/patologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Necrose/genética , Necrose/patologia , Transdução de Sinais/genética
9.
J Cell Mol Med ; 24(17): 9945-9957, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32666618

RESUMO

The current standard biomarker for myocardial infarction (MI) is high-sensitive troponin. Although powerful in clinical setting, search for new markers is warranted as early diagnosis of MI is associated with improved outcomes. Extracellular vesicles (EVs) attracted considerable interest as new blood biomarkers. A training cohort used for diagnostic modelling included 30 patients with STEMI, 38 with stable angina (SA) and 30 matched-controls. Extracellular vesicle concentration was assessed by nanoparticle tracking analysis. Extracellular vesicle surface-epitopes were measured by flow cytometry. Diagnostic models were developed using machine learning algorithms and validated on an independent cohort of 80 patients. Serum EV concentration from STEMI patients was increased as compared to controls and SA. EV levels of CD62P, CD42a, CD41b, CD31 and CD40 increased in STEMI, and to a lesser extent in SA patients. An aggregate marker including EV concentration and CD62P/CD42a levels achieved non-inferiority to troponin, discriminating STEMI from controls (AUC = 0.969). A random forest model based on EV biomarkers discriminated the two groups with 100% accuracy. EV markers and RF model confirmed high diagnostic performance at validation. In conclusion, patients with acute MI or SA exhibit characteristic EV biomarker profiles. EV biomarkers hold great potential as early markers for the management of patients with MI.


Assuntos
Angina Estável/sangue , Biomarcadores/sangue , Epitopos/sangue , Vesículas Extracelulares/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/metabolismo , Síndrome Coronariana Aguda/patologia , Idoso , Angina Estável/genética , Angina Estável/patologia , Antígenos CD40/sangue , Estudos de Coortes , Mapeamento de Epitopos , Epitopos/genética , Feminino , Humanos , Integrina alfa2/sangue , Masculino , Pessoa de Meia-Idade , Selectina-P/sangue , Intervenção Coronária Percutânea , Molécula-1 de Adesão Celular Endotelial a Plaquetas/sangue , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/patologia
11.
Int J Mol Sci ; 21(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941149

RESUMO

Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) has revolutionized the complex scientific field of disease modelling and personalized therapy. Cardiac differentiation of human iPSCs into cardiomyocytes (hiPSC-CMs) has been used in a wide range of healthy and disease models by deriving CMs from different somatic cells. Unfortunately, hiPSC-CMs have to be improved because existing protocols are not completely able to obtain mature CMs recapitulating physiological properties of human adult cardiac cells. Therefore, improvements and advances able to standardize differentiation conditions are needed. Lately, evidences of an epigenetic memory retained by the somatic cells used for deriving hiPSC-CMs has led to evaluation of different somatic sources in order to obtain more mature hiPSC-derived CMs.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia
12.
Int J Mol Sci ; 20(3)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678240

RESUMO

Cell therapy has been evaluated to enhance heart function after injury. Delivered cells mostly act via paracrine mechanisms, including secreted growth factors, cytokines, and vesicles, such as exosomes (Exo). Intramyocardial injection of cardiac-resident progenitor cells (CPC)-derived Exo reduced scarring and improved cardiac function after myocardial infarction in rats. Here, we explore a clinically relevant approach to enhance the homing process to cardiomyocytes (CM), which is crucial for therapeutic efficacy upon systemic delivery of Exo. By overexpressing exosomal CXCR4, we increased the efficacy of plasmatic injection of cardioprotective Exo-CPC by increasing their bioavailability to ischemic hearts. Intravenous injection of ExoCXCR4 significantly reduced infarct size and improved left ventricle ejection fraction at 4 weeks compared to ExoCTRL (p < 0.01). Hemodynamic measurements showed that ExoCXCR4 improved dp/dt min, as compared to ExoCTRL and PBS group. In vitro, ExoCXCR4 was more bioactive than ExoCTRL in preventing CM death. This in vitro effect was independent from SDF-1α, as shown by using AMD3100 as specific CXCR4 antagonist. We showed, for the first time, that systemic administration of Exo derived from CXCR4-overexpressing CPC improves heart function in a rat model of ischemia reperfusion injury These data represent a substantial step toward clinical application of Exo-based therapeutics in cardiovascular disease.


Assuntos
Exossomos/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Receptores CXCR4/metabolismo , Animais , Benzilaminas , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Microscopia Crioeletrônica , Ciclamos , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Compostos Heterocíclicos/uso terapêutico , Humanos , Masculino , Infarto do Miocárdio/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética
13.
J Cell Mol Med ; 22(11): 5583-5595, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30138533

RESUMO

Cardiospheres (CSps) are self-assembling clusters of a heterogeneous population of poorly differentiated cells outgrowing from in vitro cultured cardiac explants. Scanty information is available on the molecular pathways regulating CSp growth and their differentiation potential towards cardiac and vascular lineages. Here we report that Notch1 stimulates a massive increase in both CSp number and size, inducing a peculiar gene expression programme leading to a cardiovascular molecular signature. These effects were further enhanced using Adeno-Associated Virus (AAV)-based gene transfer of activated Notch1-intracellular domain (N1-ICD) or soluble-Jagged1 (sJ1) ligand to CSp-forming cells. A peculiar effect was exploited by selected pro-proliferating miRNAs: hsa-miR-590-3p induced a cardiovascular gene expression programme, while hsa-miR-199a-3p acted as the most potent stimulus for the activation of the Notch pathway, thus showing that, unlike in adult cardiomyocytes, these miRNAs involve Notch signalling activation in CSps. Our results identify Notch1 as a crucial regulator of CSp growth and differentiation along the vascular lineage, raising the attracting possibility that forced activation of this pathway might be exploited to promote in vitro CSp expansion as a tool for toxicology screening and cell-free therapeutic strategies.


Assuntos
Proteína Jagged-1/genética , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Receptor Notch1/genética , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Dependovirus , Regulação da Expressão Gênica no Desenvolvimento , Vetores Genéticos , Humanos , Miócitos Cardíacos/fisiologia , Transdução de Sinais/genética , Transfecção
15.
Eur Heart J ; 38(18): 1372-1379, 2017 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-27443883

RESUMO

Exosomes are extracellular vesicles of endosomal origin which have emerged as key mediators of intercellular communication. All major cardiac cell types-including cardiomyocytes, endothelial cells, and fibroblasts-release exosomes that modulate cellular functions. Exosomes released from human cardiac progenitor cells (CPCs) are cardioprotective and improve cardiac function after myocardial infarction to an extent comparable with that achieved by their parent cells. Cardiac progenitor cell-derived exosomes are enriched in cardioprotective microRNAs, particularly miR-146a-3p. Circulating exosomes mediate remote ischaemic preconditioning. Moreover, they currently are being investigated as diagnostic markers. The discovery that cell-derived extracellular signalling organelles mediate the paracrine effects of stem cells suggests that cell-free strategies could supplant cell transplantation. This review discusses emerging roles of exosomes in cardiovascular physiology, with a focus on cardioprotective activities of CPC-derived exosomes.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Exossomos/fisiologia , Biomarcadores/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , Humanos , Precondicionamento Isquêmico Miocárdico/métodos , Mioblastos Cardíacos/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Células-Tronco/metabolismo
16.
Stem Cells ; 33(4): 1187-99, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25534971

RESUMO

Several studies have demonstrated that miRNA are involved in cardiac development, stem cell maintenance, and differentiation. In particular, it has been shown that miRNA133, miRNA1, and miRNA499 are involved in progenitor cell differentiation into cardiomyocytes. However, it is unknown whether different miRNA may act synergistically to improve cardiac differentiation. We used mouse P19 cells as a cardiogenic differentiation model. miRNA499, miRNA1, or miRNA133 were transiently over-expressed in P19 cells individually or in different combinations. The over-expression of miRNA499 alone increased the number of beating cells and the association of miRNA499 with miRNA133 exerted a synergistic effect, further increasing the number of beating cells. Real-time polymerase chain reaction showed that the combination of miRNA499 + 133 enhanced the expression of cardiac genes compared with controls. Western blot and immunocytochemistry for connexin43 and cardiac troponin T confirmed these findings. Importantly, caffeine responsiveness, a clear functional parameter of cardiac differentiation, was increased by miRNA499 in association with miRNA133 and was directly correlated with the activation of the cardiac troponin I isoform promoter. Cyclic contractions were reversibly abolished by extracellular calcium depletion, nifedipine, ryanodine, and IP3R blockade. Finally, we demonstrated that the use of miRNA499 + 133 induced cardiac differentiation even in the absence of dimethyl sulfoxide. Our results show that the areas spontaneously contracting possess electrophysiological and pharmacological characteristics compatible with true cardiac excitation-contraction coupling. The translational relevance of our findings was reinforced by the demonstration that the over-expression of miRNA499 and miRNA133 was also able to induce the differentiation of human mesenchymal stromal cells toward the cardiac lineage.


Assuntos
Diferenciação Celular/fisiologia , MicroRNAs/biossíntese , Miócitos Cardíacos/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Humanos , Camundongos , MicroRNAs/administração & dosagem , Miócitos Cardíacos/efeitos dos fármacos , Organogênese/efeitos dos fármacos , Organogênese/fisiologia
17.
Europace ; 18(suppl 4): iv67-iv76, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28011833

RESUMO

AIM: Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are likely to revolutionize electrophysiological approaches to arrhythmias. Recent evidence suggests the somatic cell origin of hiPSCs may influence their differentiation potential. Owing to their cardiomyogenic potential, cardiac-stromal progenitor cells (CPCs) are an interesting cellular source for generation of hiPSC-derived cardiomyocytes. The effect of ionic current blockade in hiPSC-derived cardiomyocytes generated from CPCs has not been characterized yet. METHODS AND RESULTS: Human-induced pluripotent stem cell-derived cardiomyocytes were generated from adult CPCs and skin fibroblasts from the same individuals. The effect of selective ionic current blockade on spontaneously beating hiPSC-derived cardiomyocytes was assessed using multi-electrode arrays. Cardiac-stromal progenitor cells could be reprogrammed into hiPSCs, then differentiated into hiPSC-derived cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin showed higher upregulation of cardiac-specific genes compared with those of fibroblastic origin. Human-induced pluripotent stem cell-derived cardiomyocytes of both somatic cell origins exhibited sensitivity to tetrodotoxin, a blocker of Na+ current (INa), nifedipine, a blocker of L-type Ca2+ current (ICaL), and E4031, a blocker of the rapid component of delayed rectifier K+ current (IKr). Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin exhibited sensitivity to JNJ303, a blocker of the slow component of delayed rectifier K+ current (IKs). CONCLUSION: In hiPSC-derived cardiomyocytes of cardiac origin, INa, ICaL, IKr, and IKs were present as tetrodotoxin-, nifedipine-, E4031-, and JNJ303-sensitive currents, respectively. Although cardiac differentiation efficiency was improved in hiPSCs of cardiac vs. non-cardiac origin, no major functional differences were observed between hiPSC-derived cardiomyocytes of different somatic cell origins. Further studies are warranted to characterize electrophysiological properties of hiPSC-derived cardiomyocytes generated from CPCs.


Assuntos
Canais de Cálcio Tipo L/efeitos dos fármacos , Diferenciação Celular , Canais de Potássio de Retificação Tardia/antagonistas & inibidores , Fibroblastos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Canais de Sódio/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Linhagem da Célula , Células Cultivadas , Reprogramação Celular , Canais de Potássio de Retificação Tardia/metabolismo , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Potenciais da Membrana , Miócitos Cardíacos/metabolismo , Fenótipo , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo
18.
Adv Biol (Weinh) ; 8(2): e2300185, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884455

RESUMO

This study compares the impact of two isolation methods, ultracentrifugation (UC) and size exclusion chromatography (SEC), on small extracellular vesicles (sEVs) from primary human cardiac mesenchymal-derived progenitor cells (CPCs). sEV_UC and sEV_SEC exhibit similar size, marker expression, and miRNA cargo, but sEV_UC contains notably higher total protein levels. In vitro assays show that sEV_UC, despite an equal particle count, induces more robust ERK phosphorylation, cytoprotection, and proliferation in iPS-derived cardiomyocytes (iPS-CMs) compared to sEV_SEC. sEV_UC also contains elevated periostin (POSTN) protein levels, resulting in enhanced focal adhesion kinase (FAK) phosphorylation in iPS-CMs. Importantly, this effect persists with treatment with soluble free-sEV protein fraction from SEC (Prote_SEC), indicating that free proteins like POSTN in sEV_UC enhance FAK phosphorylation. In vivo, sEV contamination with soluble proteins doesn't affect cardiac targeting or FAK phosphorylation, underscoring the intrinsic tissue targeting properties of sEV. These findings emphasize the need for standardized sEV isolation methods, as the choice of method can impact experimental outcomes, particularly in vitro.


Assuntos
Carcinoma , Neoplasias do Plexo Corióideo , Vesículas Extracelulares , Humanos , Proteína-Tirosina Quinases de Adesão Focal , Cromatografia em Gel
19.
J Colloid Interface Sci ; 667: 338-349, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38640653

RESUMO

Recently, membrane devices and processes have been applied for the separation and concentration of subcellular components such as extracellular vesicles (EVs), which play a diagnostic and therapeutic role in many pathological conditions. However, the separation and isolation of specific EV populations from other components found in biological fluids is still challenging. Here, we developed a peptide-functionalized hollow fiber (HF) membrane module to achieve the separation and enrichment of highly pure EVs derived from the culture media of human cardiac progenitor cells. The strategy is based on the functionalization of PSf HF membrane module with BPt, a peptide sequence able to bind nanovesicles characterized by highly curved membranes. HF membranes were modified by a nanometric coating with a copoly azide polymer to limit non-specific interactions and to enable the conjugation with peptide ligand by click chemistry reaction. The BPt-functionalized module was integrated into a TFF process to facilitate the design, rationalization, and optimization of EV isolation. This integration combined size-based transport of species with specific membrane sensing ligands. The TFF integrated BPt-functionalized membrane module demonstrated the ability to selectively capture EVs with diameter < 200 nm into the lumen of fibers while effectively removing contaminants such as albumin. The captured and released EVs contain the common markers including CD63, CD81, CD9 and syntenin-1. Moreover, they maintained a round shape morphology and structural integrity highlighting that this approach enables EVs concentration and purification with low shear stress. Additionally, it achieved the removal of contaminants such as albumin with high reliability and reproducibility, reaching a removal of 93%.


Assuntos
Vesículas Extracelulares , Peptídeos , Humanos , Vesículas Extracelulares/química , Peptídeos/química , Peptídeos/isolamento & purificação , Membranas Artificiais , Tamanho da Partícula , Propriedades de Superfície
20.
Adv Sci (Weinh) ; : e2400533, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822532

RESUMO

Extracellular vesicles (EVs), crucial mediators of cell-to-cell communication, hold significant diagnostic potential due to their ability to concentrate protein biomarkers in bodily fluids. However, challenges in isolating EVs from biological specimens hinder their widespread use. The preferred strategy involves direct analysis, integrating isolation and analysis solutions, with immunoaffinity methods currently dominating. Yet, the heterogeneous nature of EVs poses challenges, as proposed markers may not be as universally present as thought, raising concerns about biomarker screening reliability. This issue extends to EV-mimics, where conventional methods may lack applicability. Addressing these challenges, the study reports on Membrane Sensing Peptides (MSP) as pan-vesicular affinity ligands for both EVs and their non-canonical analogs, streamlining capture and phenotyping through Single Molecule Array (SiMoA). MSP ligands enable direct analysis of circulating EVs, eliminating the need for prior isolation. Demonstrating clinical translation, MSP technology detects an EV-associated epitope signature in serum and plasma, distinguishing myocardial infarction from stable angina. Additionally, MSP allow analysis of tetraspanin-lacking Red Blood Cell-derived EVs, overcoming limitations associated with antibody-based methods. Overall, the work underlines the value of MSP as complementary tools to antibodies, advancing EV analysis for clinical diagnostics and beyond, and marking the first-ever peptide-based application in SiMoA technology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa