RESUMO
Fridericia chica is widely distributed in Brazil, where it is commonly known as crajiru or pariri in several regions. Despite its popular use for treating inflammations and as an insect repellent, there has been limited assessment of its chemical and biological properties, including its bioinsecticide activities. In this study, we conducted phytochemical analyses and investigated the larvicidal and repellent effects of F. chica against the mosquito Aedes aegypti. The F. chica (HEFc) hydroalcoholic extract was partitioned using column chromatography, and subfractions were analyzed using chromatographic and spectroscopic analyses (ESI-IT-MSn and NMR). In addition, HEFc was evaluated for its larvicidal and repellent activities. Phytochemical analyses revealed the presence of 17 constituents, including 2,4-dihydroxybenzoic and p-coumaric acids, along with umbelliferone, acetovanilone, myricetin-3-O-glucuronide, and cis-isorhapontigenin, which are reported for the first time in this species. Although no larvicidal effect was observed at the doses tested, the HEFc exhibited promising repellent effects against A. aegypti, which aligns with its ethnopharmacological potential. In addition, molecular docking studies demonstrated that the compounds of HEFc interacted efficiently with insect odorant binding proteins (OBPs), providing repellent effects. Consistent with the chemical profile and in silico studies, preparations of F. chica have considerable repellent potential.
RESUMO
Inspired by the synthetic and biological potential of organotellurium substances, a series of five- and six-membered ring organotelluranes containing a Te-O bond were synthesized and characterized. Theoretical calculations elucidated the mechanism for the oxidation-cyclization processes involved in the formation of the heterocycles, consistent with chlorine transfer to hydroxy telluride, followed by a cyclization step with simultaneous formation of the new Te-O bond and deprotonation of the OH group. Moreover, theoretical calculations also indicated anti-diastereoisomers to be major products for two chirality center-containing compounds. Antileishmanial assays against Leishmania amazonensis promastigotes disclosed 1,2λ4 -oxatellurane LQ50 (IC50 =4.1±1.0; SI=12), 1,2λ4 -oxatellurolane LQ04 (IC50 =7.0±1.3; SI=7) and 1,2λ4 -benzoxatellurole LQ56 (IC50 =5.7±0.3; SI=6) as more powerful and more selective compounds than the reference, being up to four times more active. A stability study supported by 125 Te NMR analyses showed that these heterocycles do not suffer structural modifications in aqueous-organic media or at temperatures up to 65 °C.
Assuntos
Telúrio , Ciclização , Espectroscopia de Ressonância Magnética , OxirreduçãoRESUMO
Maytenus ilicifolia or "Espinheira-Santa" is a renowned Brazilian medicinal plant usually used against intestinal and stomach ulcers. Other species with similar thorny leaves have raised great confusion in order to discern the authentic M. ilicifolia. Misidentifications can lead to product adulteration of authentic M. ilicifolia with other species, which can be found on the Brazilian market. The intake of misclassified herbal products potentially could be fatal, demanding faster reliable fingerprinting-based classification methods. In this study, the use of 1H HR-MAS NMR metabolomics fingerprinting and principal component analysis (PCA) allowed an evaluation of the authenticity for both collected and commercial M. ilicifolia samples, from the content of the flavanol, (-)-epicatechin (2), by observing variations in metabolic patterns. Plant specimen types from cultivated and natural habitats were analyzed by considering seasonal and topological differences. The interand intraplant topological metabolic profiles were found to be affected by seasonal and/or ecological trends such as sunlight, shade, rain, and the presence of pathogens. Moreover, several commercial samples, labeled as M. ilicifolia, were evaluated, but most of these products were of an inadequate quality.
Assuntos
Maytenus/química , Metaboloma , Brasil , Catequina/análise , Meio Ambiente , Folhas de Planta/química , Plantas Medicinais/química , Estações do AnoRESUMO
The harmful impact caused by pesticides on human health and the environment necessitates the development of efficient degradation processes and control of prohibited stocks of such substances. Organophosphates (OPs) are among the most used agrochemicals in the world and their degradation can proceed through several possible pathways. Investigating the reactivity of OPs with nucleophilic species allows one to propose new and efficient catalyst scaffolds for use in detoxification. In light of the remarkable catalytic activity of imidazole (IMZ) at promoting dephosphorylation processes of OPs, the reactivity of 4(5)-hydroxymethylimidazole (HMZ) with diethyl-2,4-dinitrophenylphosphate (DEDNPP) and Paraoxon are evaluated by combining experimental and theoretical approaches. It is observed that HMZ is an efficient and regiospecific catalyst with reactivity modulated by competing tautomers. To propose an optimal IMZ-based catalyst, quantum chemical calculations were performed for monosubstituted 4(5)IMZ derivatives that might cleave DEDNPP. Both inductive effects and hydrogen bonding by the substituents are shown to influence barriers and mechanisms.
RESUMO
Berberis laurina (Berberidaceae) is a well-known medicinal plant used in traditional medicine since ancient times; however, it is scarcely studied to a large-scale fingerprint. This work presents a broad-range fingerprints determination through high-resolution magical angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy, a well-established flexible analytical method and one of most powerful "omics" platforms. It had been intended to describe a large range of chemical compositions in all plant parts. Beyond that, HR-MAS NMR allowed the direct investigation of botanical material (leaves, stems, and roots) in their natural, unaltered states, preventing molecular changes. The study revealed 17 metabolites, including caffeic acid, and berberine, a remarkable alkaloid from the genus Berberis L. The metabolic pattern changes of the leaves in the course of time were found to be seasonally dependent, probably due to the variability of seasonal and environmental trends. This metabolites overview is of great importance in understanding plant (bio)chemistry and mediating plant survival and is influenceable by interacting environmental means. Moreover, the study will be helpful in medicinal purposes, health sciences, crop evaluations, and genetic and biotechnological research.
Assuntos
Berberis/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Extratos Vegetais/análise , Extratos Vegetais/metabolismo , Plantas Medicinais/química , Folhas de Planta/químicaRESUMO
The aim of this study was to investigate the influence of the production method and the polymeric carrier on the ability to generate and maintain the supersaturation of a poorly soluble drug in biorelevant medium. The amorphous solid dispersion of sulfamethoxazole, an antibacterial drug, was produced using two different polymers by spray-drying or hot melt extrusion methods. When Eudragit EPO was used, supersaturation was maintained up to 24 h for both techniques at all drug-polymer proportions. However, when Soluplus was employed in hot melt extrusion, a smaller amount of drug was dissolved when compared to the amorphous drug. The proportion of 3:7 drug-Eudragit EPO (w/w) produced by spray-drying presented a higher amount of drug dissolved in supersaturation studies and it was able to maintain the physical stability under different storage conditions throughout the 90-day evaluation. Supersaturation generation and system stability were found to be related to more effective chemical interaction between the polymer and the drug provided by the production method, as revealed by the 1D ROESY NMR experiment. Investigation of drug-polymer interaction is critical in supersaturating drug delivery systems to avoid crystallization of the drug and to predict the effectiveness of the system. Chemical compounds studied in this article: Sulfamethoxazole (PubChem CID: 4539) and Methacrylate copolymer - Eudragit EPO (PubChem CID: 65358).
Assuntos
Preparações Farmacêuticas/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Polivinil/química , Cristalização , Dessecação , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Interações Medicamentosas , Estabilidade de Medicamentos , SolubilidadeRESUMO
Covering: up to 2018With contributions from the global natural product (NP) research community, and continuing the Raw Data Initiative, this review collects a comprehensive demonstration of the immense scientific value of disseminating raw nuclear magnetic resonance (NMR) data, independently of, and in parallel with, classical publishing outlets. A comprehensive compilation of historic to present-day cases as well as contemporary and future applications show that addressing the urgent need for a repository of publicly accessible raw NMR data has the potential to transform natural products (NPs) and associated fields of chemical and biomedical research. The call for advancing open sharing mechanisms for raw data is intended to enhance the transparency of experimental protocols, augment the reproducibility of reported outcomes, including biological studies, become a regular component of responsible research, and thereby enrich the integrity of NP research and related fields.
Assuntos
Produtos Biológicos/química , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Reprodutibilidade dos TestesRESUMO
Correction for 'The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research' by James B. McAlpine et al., Nat. Prod. Rep., 2018, DOI: .
RESUMO
The biological activity of tellurium compounds is closely related to the tellurium oxidation state or some of their structural features. Hypervalent dihalogenated organotelluranes 1-[butyl(dichloro)-λ4-tellanyl]-2-(methoxymethyl)benzene (1a) and 1-[butyl(dibromide)-λ4-tellanyl]-2-(methoxymethyl)benzene (1b) have been described as inhibitors of proteases (cysteine and threonine) and tyrosine phosphatases. However, poor attention has been given to their physicochemical properties. Here, a detailed investigation of the stability in water of these organotelluranes is reported using 125Te NMR analysis. Dihalogenated organotelluranes 1a and 1b were both stable in DMSO- d6 (from 25 to 75 °C), demonstrating their thermal stability. However, the addition of a phosphate buffer solution (pH 2-8) to 1a or 1b resulted in an immediate conversion to a new Te species, assumed to be the corresponding telluroxide. Similar behavior was observed in pure water, demonstrating the low chemical stability of these dihalogenated species in the presence of water. These results allow concluding that previous biological activity reported for dihalogenated organotelluranes 1a and 1b could be attributed to the corresponding derivatives from the reaction with water. In the same way as for AS-101, we demonstrated that organotelluranes 1a and 1b are not stable in aqueous solution. It suggests a proactive role of these organotelluranes in previously reported biological activity.
RESUMO
In this study, a random mutant library of Herbaspirillum seropedicae SmR1 was constructed by Tn5 insertion and a mutant incapable of utilizing naringenin as a carbon source was isolated. The Tn5 transposon was found to be inserted in the fdeE gene (Hsero_1007), which encodes a monooxygenase. Two other mutant strains in fdeC (Hsero_1005) and fdeG (Hsero_1009) genes coding for a dioxygenase and a putative cyclase, respectively, were obtained by site-directed mutagenesis and then characterized. Liquid Chromatography coupled to mass spectrometry (LC-MS)/MS analyses of culture supernatant from the fdeE mutant strain revealed that naringenin remained unaltered, suggesting that the FdeE protein is involved in the initial step of naringenin degradation. LC-MS/MS analyses of culture supernatants from the wild-type (SmR1) and FdeC deficient mutant suggested that in H. seropedicae SmR1 naringenin is first mono-oxygenated by the FdeE protein, to produce 5,7,8-trihydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-4H-chromen-4-one, that is subsequently dioxygenated and cleaved at the A-ring by the FdeC dioxygenase, since the latter compound accumulated in the fdeC strain. After meta-cleavage of the A-ring, the subsequent metabolic steps generate oxaloacetic acid that is metabolized via the tricarboxylic acid cycle. This bacterium can also modify naringenin by attaching a glycosyl group to the B-ring or a methoxy group to the A-ring, leading to the generation of dead-end products.
Assuntos
Flavanonas/metabolismo , Herbaspirillum/metabolismo , Biodegradação Ambiental , Herbaspirillum/enzimologia , Herbaspirillum/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Espectrometria de Massas em TandemRESUMO
Imidazole (IMZ) rings catalyze many biological dephosphorylation processes. The methyl positioning effect on IMZs reactivity has long intrigued scientists and its full understanding comprises a promising tool for designing highly efficient IMZ-based catalysts. We evaluated all monosubstituted methylimidazoles (xMEI) in the reaction with diethyl 2,4-dinitrophenyl phosphate by kinetics studies, NMR analysis and DFT calculations. All xMEI showed remarkable rate enhancements, up to 1.9×105 fold, compared with spontaneous hydrolysis. Unexpectedly, the electron-donating methyl group acts to decrease the reactivity of the xMEI compared to IMZ, except for 4(5)methylimidazole, (4(5)MEI). This behavior was attributed to both electronic and steric effects. Moreover, reaction intermediates were monitored by NMR and surprisingly, the reactivity of the two different 4(5)MEI tautomers was distinguished.
RESUMO
Chemical investigation of the tubers of Sinningia allagophylla led to the isolation of two new chromenes, (2S)-12-hydroxylapachenole (1) and (3R)-3,4-dihydro-3-hydroxy-4-oxo-8-methoxylapachenole (2), and three new dimeric chromenes, allagophylldimers A-C (3-5). Thirteen known compounds, 6-methoxy-7,8-benzocoumarin (6), lapachenole, 8-methoxylapachenole, tectoquinone, 7-hydroxytectoquinone, dunniol, α-dunnione, dunnione, 8-hydroxydunnione, aggregatin E, cedrol, oleanolic acid, and halleridone, were also identified. 6-Methoxy-7,8-benzocoumarin (6) has been isolated for the first time from a natural source.
Assuntos
Benzopiranos/isolamento & purificação , Naftalenos/isolamento & purificação , Tubérculos/química , Plantas Medicinais/química , Benzofuranos/química , Benzofuranos/isolamento & purificação , Benzopiranos/química , Brasil , Cicloexanonas/química , Cicloexanonas/isolamento & purificação , Estrutura Molecular , Naftalenos/química , Naftoquinonas/química , Naftoquinonas/isolamento & purificação , Sesquiterpenos Policíclicos , Terpenos/química , Terpenos/isolamento & purificaçãoRESUMO
Phytochemical investigation of the bark of Guatteria friesiana afforded 12 new aporphines (1-12), along with nine known alkaloids (13-21). The structures of the new alkaloids were determined on the basis of spectroscopic data interpretation. The cytotoxic activity of the isolated compounds against a small panel of tumor cell lines was assessed using the Alamar blue assay.
Assuntos
Alcaloides/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Aporfinas/isolamento & purificação , Guatteria/química , Casca de Planta/química , Alcaloides/química , Alcaloides/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Aporfinas/química , Aporfinas/farmacologia , Brasil , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Células Hep G2 , Humanos , Camundongos , Estrutura Molecular , Ressonância Magnética Nuclear BiomolecularRESUMO
From the aerial parts of Acmella ciliata (H.B.K.) Cassini (basionym Spilanthes ciliata Kunth; Asteraceae), three alkamides were isolated and identified by mass- and NMR spectroscopic methods as (2E,6E,8E)-N-isobutyl-2,6,8-decatrienamide (spilanthol, (1)), N-(2-phenethyl)-2E-en-6,8-nonadiynamide (2) and (2E,7Z)-6,9-endoperoxy-N-isobutyl-2,7-decadienamide (3). While 1 and 2 are known alkamides, compound 3 has not been described until now. It was found that the unusual cyclic peroxide 3 exists as a racemate of both enantiomers of each alkamide; the 6,9-cis- as well as the 6,9-trans-configured diastereomers, the former represents the major, the latter the minor constituent of the mixture. In vitro tests for activity against the human pathogenic parasites Trypanosoma brucei rhodesiense and Plasmodium falciparum revealed that 1 and 3 possess activity against the NF54 strain of the latter (IC50 values of 4.5 and 5.1 µM, respectively) while 2 was almost inactive. Compound 3 was also tested against multiresistant P. falciparum K1 and was found to be even more active against this parasite strain (IC50 = 2.1 µM) with considerable selectivity (IC50 against L6 rat skeletal myoblasts = 168 µM).
Assuntos
Asteraceae/química , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Alcamidas Poli-Insaturadas/química , Animais , Humanos , Espectroscopia de Ressonância Magnética , Malária/parasitologia , Plasmodium falciparum/patogenicidade , Alcamidas Poli-Insaturadas/isolamento & purificação , Alcamidas Poli-Insaturadas/farmacologia , Ratos , Estereoisomerismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/patogenicidadeRESUMO
Xylopia laevigata (Annonaceae), known locally as "meiú" or "pindaíba", is widely used in folk medicine in Northeastern Brazil. In the present work, we performed phytochemical analyses of the stem of X. laevigata, which led to the isolation of 19 alkaloids: (-)-roemerine, (+)-anonaine, lanuginosine, (+)-glaucine, (+)-xylopine, oxoglaucine, (+)-norglaucine, asimilobine, (-)-xylopinine, (+)-norpurpureine, (+)-N-methyllaurotetanine, (+)-norpredicentrine, (+)-discretine, (+)-calycinine, (+)-laurotetanine, (+)-reticuline, (-)-corytenchine, (+)-discretamine and (+)-flavinantine. The in vitro cytotoxic activity toward the tumor cell lines B16-F10 (mouse melanoma), HepG2 (human hepatocellular carcinoma), K562 (human chronic myelocytic leukemia) and HL-60 (human promyelocytic leukemia) and non-tumor peripheral blood mononuclear cells (PBMCs) was tested using the Alamar Blue assay. Lanuginosine, (+)-xylopine and (+)-norglaucine had the highest cytotoxic activity. Additionally, the pro-apoptotic effects of lanuginosine and (+)-xylopine were investigated in HepG2 cells using light and fluorescence microscopies and flow cytometry-based assays. Cell morphology consistent with apoptosis and a marked phosphatidylserine externalization were observed in lanuginosine- and (+)-xylopine-treated cells, suggesting induction of apoptotic cell death. In addition, (+)-xylopine treatment caused G2/M cell cycle arrest in HepG2 cells. These data suggest that X. laevigata is a potential source for cytotoxic alkaloids.
Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Aporfinas/farmacologia , Citotoxinas/farmacologia , Caules de Planta/química , Xylopia/química , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Aporfinas/química , Aporfinas/isolamento & purificação , Citotoxinas/química , Citotoxinas/isolamento & purificação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HL-60 , Células Hep G2 , Humanos , Células K562 , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Camundongos , Extratos Vegetais/química , Cultura Primária de CélulasRESUMO
Endophytic fungi are fungi that colonize internal tissues of plants; several biologically active compounds have been isolated from these fungi. There are few studies of compounds isolated from endophytic fungi of Amazon plants. Thus, this study aimed the isolation and structural identification of ergosterol (1), ergosterol peroxide (2), mevalonolactone (3), cytochalasin B (4) and cytochalasin H (5) from Aspergillus sp. EJC 04, an endophytic fungus from Bauhinia guianensis. The cytochalasin B (4) and the diacetate derivative of cytochalasin B (4a) showed high lethality in the brine shrimp assay. This is the first occurrence of cytochalasins in Amazonian endophytic fungi from B. guianensis.
Assuntos
Artemia/efeitos dos fármacos , Aspergillus/química , Citocalasina B/toxicidade , Citocalasinas/toxicidade , Endófitos/química , Ergosterol/análogos & derivados , Fabaceae/microbiologia , Ácido Mevalônico/análogos & derivados , Acetilação , Animais , Argentina , Aspergillus/isolamento & purificação , Citocalasina B/química , Citocalasina B/isolamento & purificação , Citocalasinas/química , Citocalasinas/isolamento & purificação , Endófitos/isolamento & purificação , Ergosterol/química , Ergosterol/isolamento & purificação , Ergosterol/toxicidade , Dose Letal Mediana , Ácido Mevalônico/química , Ácido Mevalônico/isolamento & purificação , Ácido Mevalônico/toxicidade , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-AtividadeRESUMO
Many imidazole (IMZ) derivatives of pharmaceutical interest, which are potentially catalytic in dephosphorylation reactions, are soluble solely in mixtures of water and organic solvent. In order to understand these poorly explored reactions and properly compare them, a thorough study related to solvent effects for the analogous spontaneous reaction and with common IMZ derivatives is necessary, which is lacking in the literature. Herein, we report a quantitative solvent effect analysis in DMSO/water mixtures for (i) the hydrolysis reaction of diethyl 2,4-dinitrophenylphosphate (DEDNPP) and (ii) the nucleophilic reaction of IMZ and 1-methylimidazole (MEI) with DEDNPP. The solvent effect was fitted satisfactorily with multiple regression analysis, correlating the obtained second-order rate constants with solvent parameters such as acidity, basicity, and polarity/polarizability from Catalán's scale. The contribution of these parameters can be taken into account to elucidate the reactivity in these media. Interestingly, IMZ is more reactive than MEI in DMSO, compared to water alone, which is attributed to the availability of hydrogen-bond formation. Nuclear magnetic resonance spectroscopy ((1)H, (13)C, and (31)P), mass spectrometry, thermodynamic analysis, and density functional theory calculations were carried out to corroborate the proposed nucleophilic mechanism.
Assuntos
2,4-Dinitrofenol/análogos & derivados , Dimetil Sulfóxido/química , Imidazóis/química , Organofosfatos/química , Solventes/química , Água/química , 2,4-Dinitrofenol/química , Catálise , Ésteres , Cinética , Espectroscopia de Ressonância Magnética , Fosfatos/químicaRESUMO
Cardiotonic steroids (CS), natural compounds with traditional use in cardiology, have been recently suggested to exert potent anticancer effects. However, the repertoire of molecules with Na,K-ATPase activity and anticancer properties is limited. This paper describes the synthesis of 6 new digoxin derivatives substituted (on the C17-butenolide) with γ-benzylidene group and their cytotoxic effect on human fibroblast (WI-26 VA4) and cancer (HeLa and RKO) cell lines as well as their effect on Na,K-ATPase activity and expression. As digoxin, compound BD-4 was almost 100-fold more potent than the other derivatives for cytotoxicity with the three types of cells used and was also the only one able to fully inhibit the Na,K-ATPase of HeLa cells after 24h treatment. No change in the Na,K-ATPase α1 isoform protein expression was detected. On the other hand it was 30-40 fold less potent for direct Na,K-ATPase inhibition, when compared to the most potent derivatives, BD-1 and BD-3, and digoxin. The data presented here demonstrated that the anticancer effect of digoxin derivatives substituted with γ-benzylidene were not related with their inhibition of Na,K-ATPase activity or alteration of its expression, suggesting that this classical molecular mechanism of CS is not involved in the cytotoxic effect of our derivatives.
Assuntos
Antineoplásicos/síntese química , Compostos de Benzilideno/química , Digoxina/análogos & derivados , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Sítios de Ligação , Encéfalo/enzimologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Digoxina/síntese química , Digoxina/toxicidade , Células HeLa , Humanos , Rim/enzimologia , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Ratos , ATPase Trocadora de Sódio-Potássio/metabolismoRESUMO
Two new hydronaphthoquinones, aggregatins E and F (1 and 2, resp.) were isolated from the tubers of Sinningia aggregata (Ker-Gawl.) Wiehler (Gesneriaceae), along with twelve known compounds aggregatin D (3), tectoquinone (4), 1-hydroxy-2-methylanthraquinone (5), icosyl ferulate (6), pustuline (7), 1,6-dihydroxy-2-methylanthranquinone (8), 6-hydroxy-2-methylanthraquinone (9), 7-hydroxy-2-methylanthraquinone (10), tyrosol (11), halleridone (12), calceolarioside B (13), and cornoside (14). All compounds were identified by analysis of spectroscopic and spectrometric data. Compounds 3, 4, and 10 had already been reported in this species. Compounds 2 and 3 were evaluated against several tumor cell lines, but only 3 exhibited activities against UACC-62, 786-0 and OVCAR-3 cell lines, with IC50 values of 12.3, 12.8 and 0.3â µg/ml, respectively, without toxic effects on non-cancer cell line HaCat (human keratinocyte).
Assuntos
Antineoplásicos/isolamento & purificação , Magnoliopsida/química , Naftoquinonas/isolamento & purificação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Naftoquinonas/farmacologiaRESUMO
INTRODUCTION: The Annonaceae family is known as a promising abundant source of secondary metabolites, especially annonaceous acetogenins, terpenoids and isoquinoline-derived alkaloids. Although widely investigated from the phytochemical viewpoint, this family still presents some largely unexplored genera, e.g. the Bocageopsis. OBJECTIVE: To investigate the alkaloid content of Bocageopsis pleiosperma Maas using direct infusion electrospray ionisation ion trap tandem mass spectrometry (ESI-IT-MS(n)) analysis. METHODOLOGY: Dichloromethane extracts of aerial parts were subjected to acid-base partitioning to yield the alkaloidal fractions. These fractions were analysed by direct infusion into a (+)ESI-IT-MS(n) system. The alkaloidal fraction from the leaves was also obtained on a large scale and subjected to chromatographic separation. RESULTS: The tentative MS(n) -based identification of alkaloids in leaves, twigs and trunk bark showed that aporphine alkaloids were restricted to the leaves and twigs, tetrahydroprotoberberine alkaloids were only found in the twigs and trunk bark while benzylisoquinoline alkaloids were found in the leaves, twigs and trunk bark. Chromatographic separation of the leaf alkaloidal fraction yielded the aporphine alkaloids nornuciferine, asimilobine and isoboldine, the ß-carboline alkaloid tetrahydroharman and some mixtures containing benzylisoquinoline and aporphine alkaloids, all described for the first time in the Bocageopsis genus. Furthermore, tetrahydroharman has not previously been reported in the Magnoliales order. CONCLUSION: Direct infusion ESI-IT-MS(n) analysis of alkaloids allowed fast recognition of alkaloidal classes previously reported in the Annonaceae family, aiding the chromatographic step and allowing a selective isolation of compounds previously not identified in the Bocageopsis genus.