Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Plant Dis ; 106(7): 1935-1943, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35084944

RESUMO

Brown spot needle blight (BSNB), caused by the fungal pathogen Lecanosticta acicola, is a well-known disease of Pinus spp. in several northern hemisphere countries. In the southern hemisphere, this disease has been reported only in Colombia and, apart from a single report of severe defoliation of Pinus radiata plantations in the early 1980s, has not caused serious damage in this country. An outbreak of a disease resembling BSNB on Mesoamerican Pinus spp. grown in Colombia has raised concern that L. acicola may have reemerged as a pathogen. DNA sequence-based analyses for the internal transcribed spacers, translation elongation factor 1-α and RNA polymerase II second largest subunit regions showed that the outbreaks were caused by L. pharomachri, a species distinct from, but closely related to, L. acicola. The discovery of L. pharomachri in Colombia is the first incidence of the pathogen causing a serious disease problem and the first occurrence on the hosts P. patula and P. maximinoi. A sexual state for L. pharomachri was discovered for the first time, and the description of the species has thus been emended.


Assuntos
Pinus , Ascomicetos , Colômbia , Pinus/microbiologia , Doenças das Plantas/microbiologia
2.
Fungal Genet Biol ; 149: 103527, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524555

RESUMO

Cercospora zeina is a causal pathogen of gray leaf spot (GLS) disease of maize in Africa. This fungal pathogen exhibits a high genetic diversity in South Africa. However, little is known about the pathogen's population structure in the rest of Africa. In this study, we aimed to assess the diversity and gene flow of the pathogen between major maize producing countries in East and Southern Africa (Kenya, Uganda, Zambia, Zimbabwe, and South Africa). A total of 964 single-spore isolates were made from GLS lesions and confirmed as C.zeina using PCR diagnostics. The other causal agent of GLS, Cercospora zeae-maydis, was absent. Genotyping all the C.zeina isolates with 11 microsatellite markers and a mating-type gene diagnostic revealed (i) high genetic diversity with some population structure between the five African countries, (ii) cryptic sexual recombination, (iii) that South Africa and Kenya were the greatest donors of migrants, and (iv) that Zambia had a distinct population. We noted evidence of human-mediated long-distance dispersal, since four haplotypes from one South African site were also present at five sites in Kenya and Uganda. There was no evidence for a single-entry point of the pathogen into Africa. South Africa was the most probable origin of the populations in Kenya, Uganda, and Zimbabwe. Continuous annual maize production in the tropics (Kenya and Uganda) did not result in greater genetic diversity than a single maize season (Southern Africa). Our results will underpin future management of GLS in Africa through effective monitoring of virulent C.zeina strains.


Assuntos
Cercospora/genética , Cercospora/patogenicidade , Zea mays/microbiologia , África Oriental , Ascomicetos/genética , Resistência à Doença/genética , Fluxo Gênico/genética , Variação Genética/genética , Genética Populacional/métodos , Haplótipos/genética , Repetições de Microssatélites/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , África do Sul
3.
Phytopathology ; 111(1): 116-127, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33112215

RESUMO

Many current tree improvement programs are incorporating assisted gene flow strategies to match reforestation efforts with future climates. This is the case for the lodgepole pine (Pinus contorta var. latifolia), the most extensively planted tree in western Canada. Knowledge of the structure and origin of pathogen populations associated with this tree would help improve the breeding effort. Recent outbreaks of the Dothistroma needle blight (DNB) pathogen Dothistroma septosporum on lodgepole pine in British Columbia and its discovery in Alberta plantations raised questions about the diversity and population structure of this pathogen in western Canada. Using genotyping-by-sequencing on 119 D. septosporum isolates from 16 natural pine populations and plantations from this area, we identified four genetic lineages, all distinct from the other DNB lineages from outside of North America. Modeling of the population history indicated that these lineages diverged between 31.4 and 7.2 thousand years ago, coinciding with the last glacial maximum and the postglacial recolonization of lodgepole pine in western North America. The lineage found in the Kispiox Valley from British Columbia, where an unprecedented DNB epidemic occurred in the 1990s, was close to demographic equilibrium and displayed a high level of haplotypic diversity. Two lineages found in Alberta and Prince George (British Columbia) showed departure from random mating and contemporary gene flow, likely resulting from pine breeding activities and material exchanges in these areas. The increased movement of planting material could have some major consequences by facilitating secondary contact between genetically isolated DNB lineages, possibly resulting in new epidemics.


Assuntos
Pinus , Doenças das Plantas , Ascomicetos , Colúmbia Britânica , Humanos , América do Norte , Melhoramento Vegetal
4.
Phytopathology ; 111(7): 1064-1079, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33200960

RESUMO

Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.


Assuntos
Fusarium , Fusarium/genética , Filogenia , Doenças das Plantas , Plantas
5.
Plant Dis ; 105(6): 1648-1656, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33200973

RESUMO

The fungal pathogen, Calonectria pauciramosa, has caused serious diseases of many important plants worldwide. Understanding the genetic diversity and mating type distribution of this pathogen provides an essential step toward the development of disease control measures. In this study, we designed 15 polymorphic microsatellite markers by using genome sequences of two Ca. pauciramosa isolates having opposite mating type and from different countries. These markers were used to determine the genetic diversity of 145 isolates representing 13 different hosts (12 plant hosts residing in 12 genera, and soil) from 10 countries. In addition, mating type genes were amplified to investigate the reproduction mode of the pathogens in these populations by using mating type primers designed for Calonectria spp. Results revealed that a single dominant genotype, isolated from 11 plant genera residing in eight families, was present in seven countries across five continents. Only mating type MAT1-1 or MAT1-2 was amplified in each of the isolates, confirming that Ca. pauciramosa is heterothallic. Both mating types were detected in isolates from Eucalyptus in South Africa and Uruguay. The MAT1-2 phenotype was widely distributed in isolates from 12 different hosts (11 plant hosts and soil) collected in 10 countries. Overall, the results suggest that there has been substantial global movement of Ca. pauciramosa and that this has shaped its current population structure.


Assuntos
Genes Fúngicos Tipo Acasalamento , Hypocreales , Variação Genética , Reprodução
6.
BMC Genomics ; 21(1): 362, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32408859

RESUMO

BACKGROUND: The taxonomic history of Ceratocystis, a genus in the Ceratocystidaceae, has been beset with questions and debate. This is due to many of the commonly used species recognition concepts (e.g., morphological and biological species concepts) providing different bases for interpretation of taxonomic boundaries. Species delineation in Ceratocystis primarily relied on genealogical concordance phylogenetic species recognition (GCPSR) using multiple standard molecular markers. RESULTS: Questions have arisen regarding the utility of these markers e.g., ITS, BT and TEF1-α due to evidence of intragenomic variation in the ITS, as well as genealogical incongruence, especially for isolates residing in a group referred to as the Latin-American clade (LAC) of the species. This study applied a phylogenomics approach to investigate the extent of phylogenetic incongruence in Ceratocystis. Phylogenomic analyses of a total of 1121 shared BUSCO genes revealed widespread incongruence within Ceratocystis, particularly within the LAC, which was typified by three equally represented topologies. Comparative analyses of the individual gene trees revealed evolutionary patterns indicative of hybridization. The maximum likelihood phylogenetic tree generated from the concatenated dataset comprised of 1069 shared BUSCO genes provided improved phylogenetic resolution suggesting the need for multiple gene markers in the phylogeny of Ceratocystis. CONCLUSION: The incongruence observed among single gene phylogenies in this study call into question the utility of single or a few molecular markers for species delineation. Although this study provides evidence of interspecific hybridization, the role of hybridization as the source of discordance will require further research because the results could also be explained by high levels of shared ancestral polymorphism in this recently diverged lineage. This study also highlights the utility of BUSCO genes as a set of multiple orthologous genes for phylogenomic studies.


Assuntos
Ceratocystis/classificação , Especiação Genética , Filogenia , Ceratocystis/genética , Evolução Molecular , Genes Fúngicos/genética , Genoma Fúngico/genética , Hibridização Genética , Análise de Sequência de DNA
7.
Fungal Genet Biol ; 143: 103433, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32652232

RESUMO

Ceratocystis fimbriata is a host specific fungal pathogen of sweet potato (Ipomoea batatas). The closely related species, C. manginecans, is an important pathogen of trees (e.g. Acacia mangium and Mangifera indica) but has never been isolated from tuber crops. The genetic factors that determine the host range and host specificity of these species have not been determined. The aim of this study was to compare the genomes of C. fimbriata and C. manginecans in order to identify species-specific genetic differences that could be associated with host specificity. This included whole-genome alignments as well as comparisons of gene content and transposable elements (TEs). The genomes of the two species were found to be very similar, sharing similar catalogues of CAZymes, peptidases and lipases. However, the genomes of the two species also varied, harbouring species-specific genes (e.g. small secreted effectors, nutrient processing proteins and stress response proteins). A portion of the TEs identified (17%) had a unique distribution in each species. Transposable elements appeared to have played a prominent role in the divergence of the two species because they were strongly associated with chromosomal translocations and inversions as well as with unique genomic regions containing species-specific genes. Two large effector clusters, with unique TEs in each species, were identified. These effectors displayed non-synonymous mutations and deletions, conserved within a species, and could serve as mutational hot-spots for the development of host specificity in the two species.


Assuntos
Ceratocystis/genética , Elementos de DNA Transponíveis/genética , Doenças das Plantas/genética , Adaptação Fisiológica/genética , Ceratocystis/patogenicidade , Genoma Fúngico/genética , Genômica , Adaptação ao Hospedeiro/genética , Ipomoea batatas/genética , Ipomoea batatas/microbiologia , Doenças das Plantas/microbiologia , Especificidade da Espécie
8.
Fungal Genet Biol ; 135: 103300, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31730909

RESUMO

The detrimental effect of fungal pathogens on forest trees is an increasingly important problem that has implications for the health of our planet. Despite this, the study of molecular plant-microbe interactions in forest trees is in its infancy, and very little is known about the roles of effector molecules from forest pathogens. Dothistroma septosporum causes a devastating needle blight disease of pines, and intriguingly, is closely related to Cladosporium fulvum, a tomato pathogen in which pioneering effector biology studies have been carried out. Here, we studied D. septosporum effectors that are shared with C. fulvum, by comparing gene sequences from global isolates of D. septosporum and assessing effector function in both host and non-host plants. Many of the effectors were predicted to be non-functional in D. septosporum due to their pseudogenization or low expression in planta, suggesting adaptation to lifestyle and host. Effector sequences were polymorphic among a global collection of D. septosporum isolates, but there was no evidence for positive selection. The DsEcp2-1 effector elicited cell death in the non-host plant Nicotiana tabacum, whilst D. septosporum DsEcp2-1 mutants showed increased colonization of pine needles. Together these results suggest that DsEcp2-1 might be recognized by an immune receptor in both angiosperm and gymnosperm plants. This work may lead to the identification of plant targets for DsEcp2-1 that will provide much needed information on the molecular basis of gymnosperm-pathogen interactions in forests, and may also lead to novel methods of disease control.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Ascomicetos/genética , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno/genética , Pinus/microbiologia , Ascomicetos/patogenicidade , Proteínas Fúngicas/metabolismo , Pinus/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Nicotiana/microbiologia , Virulência
9.
Antonie Van Leeuwenhoek ; 113(6): 803-823, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32086683

RESUMO

Non-native Acacia plantations in Indonesia were first reported to be infested by a native ambrosia beetle species, identified as Euwallacea fornicatus in 1993. Recently the level of infestation in these plantations by ambrosia beetles has steadily increased. The recent redefinition of the taxonomic parameters of the Euwallacea fornicatus species complex has resulted in the identity of the ambrosia beetle species in these plantations becoming unclear. This is also true for their obligate fungal associates. Therefore, the aim of this study was to identify the ambrosia beetle species, as well as its corresponding fungal associate/s, infesting Acacia crassicarpa plantations in Riau, Indonesia. Morphological identification and phylogenetic analysis of the mitochondrial cytochrome oxidase c subunit I (COI) gene, revealed that the beetles are E. perbrevis, previously a synonym of E. fornicatus and commonly referred to as the Tea Shot Hole Borer A (TSHBa). Multi-locus phylogenetic analyses of the fungal associate of E. perbrevis revealed a Fusarium sp. that is among members of the Ambrosia Fusarium Clade (AFC), but that is genetically distinct from other previously identified Fusarium symbionts of Euwallacea species. This novel fungal species is described here as Fusarium rekanum sp. nov.


Assuntos
Fusarium , Gorgulhos/microbiologia , Acacia , Animais , Besouros , Fusarium/classificação , Fusarium/genética , Fusarium/isolamento & purificação , Genes Fúngicos , Indonésia , Filogenia , Plantas , Simbiose
10.
Fungal Genet Biol ; 125: 36-44, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30659907

RESUMO

Gray leaf spot (GLS) is an important foliar disease of maize. This disease, caused by Cercospora zeina, is prevalent in both smallholder and commercial maize farms in South Africa. Notably, smallholder practices are geared towards conservation agriculture, planting diverse maize genotypes within a field and avoiding chemical control. This study examined the population genetic structure of 129 C. zeina isolates from three smallholder farm sites in KwaZulu-Natal in South Africa using 13 microsatellite markers. These were analysed, together with 239 isolates previously analysed from four commercial farms in the same province, to determine whether farming systems influence the genetic diversity of C.zeina. In addition, we wanted to determine whether the smallholder farming system harboured a greater diversity of C.zeina haplotypes due to lack of chemical spraying of these crops. Overall, farming systems exhibited partial, but significant, population differentiation, contributing 10% of the genetic variation observed. A 16% genetic variation conferred between KwaNxamalala (smallholder) and Cedara (commercial) areas that are in close proximity, confirmed this. Private alleles accounted for 29% of the 52 alleles observed in smallholder farms. Smallholder farms harboured a higher gene and genotypic diversity, with a clonal fraction of only 13% compared to 32% in commercial farms. Mating type ratios indicative of sexual recombination and lower linkage disequilibrium in most smallholder populations were consistent with higher levels of diversity. This study suggests that commercial farming practices, such as fungicides and monoculture crop planting, may result in a narrower genetic diversity of the pathogen that is then propagated by asexual reproduction. In contrast, management of GLS disease in smallholder farms should consider the greater diversity of pathogen genotypes, especially if future research shows that this equates to a greater diversity of pathogenicity alleles.


Assuntos
Ascomicetos/genética , Genética Populacional , Doenças das Plantas/genética , Zea mays/microbiologia , Agricultura , Alelos , Ascomicetos/patogenicidade , Produtos Agrícolas , Haplótipos , Humanos , Repetições de Microssatélites/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Zea mays/genética
11.
Fungal Genet Biol ; 131: 103242, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31212023

RESUMO

Some species of Ceratocystis display strong host specificity, such as C. fimbriata sensu stricto that is restricted to sweet potato (Ipomoea batatas) as host. In contrast, the closely related C. manginecans, infects Acacia mangium and Mangifera indica but is not pathogenic to I. batatas. Despite the economic importance of these fungi, knowledge regarding the genetic factors that influence their pathogenicity and host specificity is limited. A recent inheritance study, based on an interspecific cross between C. fimbriata and C. manginecans and the resultant 70 F1 progeny, confirmed that traits such as mycelial growth rate, spore production and aggressiveness on A. mangium and I. batatas are regulated by multiple genes. In the present study, a quantitative trait locus (QTL) analysis was performed to determine the genomic loci associated with these traits. All 70 progeny isolates were genotyped with SNP markers and a linkage map was constructed. The map contained 467 SNPs, distributed across nine linkage groups, with a total length of 1203 cm. Using the progeny genotypes and phenotypes, one QTL was identified on the linkage map for mycelial growth rate, one for aggressiveness to A. mangium and two for aggressiveness to I. batatas (P < 0.05). Two candidate genes, likely associated with mycelial growth rate, were identified in the QTL region. The three QTLs associated with aggressiveness to different hosts contained candidate genes involved in protein processing, detoxification and regions with effector genes and high transposable element density. The results provide a foundation for studies considering the function of genes regulating various quantitative traits in Ceratocystis.


Assuntos
Ascomicetos/genética , Mapeamento Cromossômico/métodos , Interações entre Hospedeiro e Microrganismos/genética , Micélio/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Ascomicetos/patogenicidade , Elementos de DNA Transponíveis/genética , Ligação Genética , Loci Gênicos , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Translocação Genética , Virulência/genética
12.
Fungal Genet Biol ; 110: 15-25, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29223582

RESUMO

Dothistroma septosporum, a notorious pine needle pathogen with an unknown historical geographic origin and poorly known distribution pathways, is nowadays found almost in all areas inhabited by pines (Pinus spp.). The main aim of this study was to determine the relationship between North European and East Asian populations. In total, 238 Eurasian D. septosporum isolates from 11 countries, including 211 isolates from northern Europe, 16 isolates from Russian Far East and 11 isolates from Bhutan were analysed using 11 species-specific microsatellite and mating type markers. The most diverse populations were found in northern Europe, including the Baltic countries, Finland and European Russia. Notably, D. septosporum has not caused heavy damage to P. sylvestris in northern Europe, which may suggest a long co-existence of the host and the pathogen. No indication was obtained that the Russian Far East or Bhutan could be the indigenous area of D. septosporum, as the genetic diversity of the fungus there was low and evidence suggests gene flow from northern Europe to Russian Far East. On the western coast of Norway, a unique genetic pattern was observed, which differed from haplotypes dominating other Fennoscandian populations. As an agent of dothistroma needle blight, only D. septosporum was documented in northern Europe and Asia, while D. pini was found in Ukraine and Serbia.


Assuntos
Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ásia , Europa (Continente) , Variação Genética/genética , Pinus/microbiologia
13.
Fungal Genet Biol ; 106: 42-50, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28690095

RESUMO

Fungal secondary metabolites have many important biological roles and some, like the toxic polyketide aflatoxin, have been intensively studied at the genetic level. Complete sets of polyketide synthase (PKS) genes can now be identified in fungal pathogens by whole genome sequencing and studied in order to predict the biosynthetic potential of those fungi. The pine needle pathogen Dothistroma septosporum is predicted to have only three functional PKS genes, a small number for a hemibiotrophic fungus. One of these genes is required for production of dothistromin, a polyketide virulence factor related to aflatoxin, whose biosynthetic genes are dispersed across one chromosome rather than being clustered. Here we evaluated the evolution of the other two genes, and their predicted gene clusters, using phylogenetic and population analyses. DsPks1 and its gene cluster are quite conserved amongst related fungi, whilst DsPks2 appears to be novel. The DsPks1 protein was predicted to be required for dihydroxynaphthalene (DHN) melanin biosynthesis but functional analysis of DsPks1 mutants showed that D. septosporum produced mainly dihydroxyphenylalanine (DOPA) melanin, which is produced by a PKS-independent pathway. Although the secondary metabolites made by these two PKS genes are not known, comparisons between strains of D. septosporum from different regions of the world revealed that both PKS core genes are under negative selection and we suggest they may have important cryptic roles in planta.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/genética , Di-Hidroxifenilalanina/análogos & derivados , Evolução Molecular , Policetídeo Sintases/genética , Policetídeos/metabolismo , Metabolismo Secundário/genética , Ascomicetos/classificação , Di-Hidroxifenilalanina/genética , Di-Hidroxifenilalanina/metabolismo , Florestas , Melaninas/biossíntese , Melaninas/genética , Família Multigênica , Naftóis , Filogenia , Pinus/microbiologia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
14.
Phytopathology ; 106(11): 1386-1392, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27392177

RESUMO

Exserohilum turcicum is the causal agent of northern corn leaf blight, a destructive foliar disease of maize that results in yield losses worldwide. In South Africa, typical yield losses range from 15 to 30%. Previous studies found high haplotypic diversity with evidence for sexual recombination in E. turcicum populations from tropical climates such as Kenya. However, the population genetic structure and method of reproduction of E. turcicum in South Africa is unknown and, therefore, was investigated. Twelve polymorphic microsatellite markers were screened on 258 E. turcicum isolates from maize collected during 2012 and 2013 from three maize fields in South Africa. A multiplex polymerase chain reaction assay amplifying both mating type idiomorphs was applied to investigate the distribution of mating types. No distinct genetic clusters were observed. Shared haplotypes were identified between isolates separated by distances of up to 762 km, which provided evidence of migration. High haplotypic diversity indicated that sexual reproduction is occurring among E. turcicum isolates, although mating type ratios and linkage disequilibrium analyses did not support the hypothesis of random mating. The population genetic structure of E. turcicum in South Africa is likely due to the direct movement and spread of isolates undergoing a mixed reproductive lifecycle.


Assuntos
Ascomicetos/genética , Genética Populacional , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Ascomicetos/isolamento & purificação , Genes Fúngicos Tipo Acasalamento/genética , Ligação Genética , Estruturas Genéticas , Geografia , Haplótipos , Repetições de Microssatélites/genética , África do Sul
15.
Phytopathology ; 106(11): 1413-1425, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26714104

RESUMO

Lecanosticta acicola is a heterothallic ascomycete that causes brown spot needle blight on native and nonnative Pinus spp. in many regions of the world. In this study we investigated the origin of European L. acicola populations and estimated the level of random mating of the pathogen in affected areas. Part of the elongation factor 1-α gene was sequenced, 11 microsatellite regions were screened, and the mating type idiomorphs were determined for 201 isolates of L. acicola collected from three continents and 17 host species. The isolates from Mexico and Guatemala were unique, highly diverse and could represent cryptic species of Lecanosticta. The isolates from East Asia formed a uniform and discrete group. Two distinct populations were identified in both North America and Europe. Approximate Bayesian computation analyses strongly suggest independent introductions of two populations from North America into Europe. Microsatellite data and mating type distributions indicated random recombination in the populations of North America and Europe. Its intercontinental introduction can most likely be explained as a consequence of the movement of infected plant material. In contrast, the spread of L. acicola within Europe appears to be primarily due to conidial dispersion and probably also ascospore dissemination.


Assuntos
Ascomicetos/genética , Pinus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/isolamento & purificação , Ascomicetos/fisiologia , Teorema de Bayes , Europa (Continente) , Genes Fúngicos Tipo Acasalamento/genética , Variação Genética , Genética Populacional , Geografia , Guatemala , México , Repetições de Microssatélites/genética , América do Norte , Filogenia , Folhas de Planta/microbiologia
16.
Phytopathology ; 106(10): 1194-1205, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27392176

RESUMO

South Africa is one of the leading maize-producing countries in sub-Saharan Africa. Since the 1980s, Cercospora zeina, a causal agent of gray leaf spot of maize, has become endemic in South Africa, and is responsible for substantial yield reductions. To assess genetic diversity and population structure of C. zeina in South Africa, 369 isolates were collected from commercial maize farms in three provinces (KwaZulu-Natal, Mpumalanga, and North West). These isolates were evaluated with 14 microsatellite markers and species-specific mating type markers that were designed from draft genome sequences of C. zeina isolates from Africa (CMW 25467) and the United States (USPA-4). Sixty alleles were identified across 14 loci, and gene diversity values within each province ranged from 0.18 to 0.35. High levels of gene flow were observed (Nm = 5.51), and in a few cases, identical multilocus haplotypes were found in different provinces. Overall, 242 unique multilocus haplotypes were identified with a low clonal fraction of 34%. No distinct population clusters were identified using STRUCTURE, principal coordinate analysis, or Weir's theta θ statistic. The lack of population differentiation was supported by analysis of molecular variance tests, which indicated that only 2% of the variation was attributed to variability between populations from each province. Mating type ratios of MAT1-1 and MAT1-2 idiomorphs from 335 isolates were not significantly different from a 1:1 ratio in all provinces, which provided evidence for sexual reproduction. The draft genome of C. zeina CMW 25467 exhibited a complete genomic copy of the MAT1-1 idiomorph as well as exonic fragments of MAT genes from both idiomorphs. The high level of gene diversity, shared haplotypes at different geographical locations within South Africa, and presence of both MAT idiomorphs at all sites indicates widespread dispersal of C. zeina between maize fields in the country as well as evidence for sexual recombination. The outcomes of this genome-enabled study are important for disease management since the high diversity has implications for dispersal of fungicide resistance should it emerge and the need for diversified resistance breeding.


Assuntos
Ascomicetos/genética , Variação Genética , Genética Populacional , Genoma Fúngico/genética , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Ascomicetos/isolamento & purificação , Fluxo Gênico , Geografia , Repetições de Microssatélites/genética , Análise de Sequência de DNA , África do Sul
17.
Antonie Van Leeuwenhoek ; 107(6): 1451-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25840908

RESUMO

During routine surveys for possible fungal pathogens in the rapidly expanding plantations of Eucalyptus and Cunninghamia lanceolata in China, numerous isolates of unknown species in the genus Ceratocystis (Microascales) were obtained from tree wounds. In this study we identified the Ceratocystis isolates from Eucalyptus and Cunninghamia in the GuangDong, GuangXi, FuJian and HaiNan Provinces of South China based on morphology and through comparisons of DNA sequence data for the ITS, partial ß-tubulin and TEF-1α gene regions. Morphological and DNA sequence comparisons revealed two previously unknown species residing in the Indo-Pacific Clade. These are described here as Ceratocystis cercfabiensis sp. nov. and Ceratocystis collisensis sp. nov. Isolates of Ceratocystis cercfabiensis showed intragenomic variation in their ITS sequences and four strains were selected for cloning of the ITS gene region. Twelve ITS haplotypes were obtained from 17 clones selected for sequencing, differing in up to seven base positions and representing two separate phylogenetic groups. This is the first evidence of multiple ITS types in isolates of Ceratocystis residing in the Indo-Pacific Clade. Caution should thus be exercised when using the ITS gene region as a barcoding marker for Ceratocystis species in this clade. This study also represents the first record of a species of Ceratocystis from Cunninghamia.


Assuntos
Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Cunninghamia/microbiologia , Eucalyptus/microbiologia , Ascomicetos/genética , Ascomicetos/fisiologia , China , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Haplótipos , Dados de Sequência Molecular , Fator 1 de Elongação de Peptídeos/genética , Filogenia , Análise de Sequência de DNA , Tubulina (Proteína)/genética
18.
Front Plant Sci ; 15: 1404483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148617

RESUMO

Maize is the most widely cultivated and major security crop in sub-Saharan Africa. Three foliar diseases threaten maize production on the continent, namely northern leaf blight, gray leaf spot, and southern corn leaf blight. These are caused by the fungi Exserohilum turcicum, Cercospora zeina, and Bipolaris maydis, respectively. Yield losses of more than 10% can occur if these pathogens are diagnosed inaccurately or managed ineffectively. Here, we review recent advances in understanding the population biology and management of the three pathogens, which are present in Africa and thrive under similar environmental conditions during a single growing season. To effectively manage these pathogens, there is an increasing adoption of breeding for resistance at the small-scale level combined with cultural practices. Fungicide usage in African cropping systems is limited due to high costs and avoidance of chemical control. Currently, there is limited knowledge available on the population biology and genetics of these pathogens in Africa. The evolutionary potential of these pathogens to overcome host resistance has not been fully established. There is a need to conduct large-scale sampling of isolates to study their diversity and trace their migration patterns across the continent.

19.
Fungal Biol ; 128(6): 2062-2072, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39174241

RESUMO

Eucalyptus spp. in plantations are negatively affected by canker and wilt diseases caused by several species of Ceratocystis, particularly those in the Latin American Clade (LAC). Ceratocystis eucalypticola and Ceratocystis manginecans are of particular concern where disease epidemics are reported globally, with recent outbreaks emerging in South African and Indonesian Eucalyptus plantations. Consequently, a rapid screening protocol is required for these pathogens. In this study, a high-resolution melting curve analysis (HRMA) was developed to detect C. eucalypticola and C. manginecans that bypasses time-consuming isolation and post-PCR procedures. Primers targeting a 172 bp region of the cerato-platanin (CP) gene were designed. Using these primers, the accuracy of HRMA to detect and distinguish between these two LAC species was assessed using pure fungal DNA, and DNA extracted directly from Eucalyptus samples naturally infected with C. eucalypticola. The assay accurately detected the presence of C. eucalypticola and C. manginecans and quantifies their DNA, both from cultures, and directly from wood samples. HRMA further differentiated these two species from all other tested LAC individuals. This assay was also able to detect the presence of all the tested LAC species and distinguish seven of these, including C. fimbriata, to species level. Ceratocystis polyconidia was the only non-LAC off-target species detected. Based on these results, the developed assay can be used to rapidly identify C. eucalypticola and C. manginecans directly from infected plant material or fungal cultures, with the potential to also screen for several other LAC species.


Assuntos
Ascomicetos , DNA Fúngico , Eucalyptus , Doenças das Plantas , Eucalyptus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/classificação , DNA Fúngico/genética , Primers do DNA/genética , Temperatura de Transição , Sensibilidade e Especificidade
20.
IMA Fungus ; 15(1): 12, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831329

RESUMO

The pace at which Next Generation Sequence data is being produced continues to accelerate as technology improves. As a result, such data are increasingly becoming accessible to biologists outside of the field of bioinformatics. In contrast, access to training in the methods of genome assembly and annotation are not growing at a similar rate. In this issue, we report on a Genome Assembly Workshop for Mycologists that was held at the Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria, South Africa and make available the 12 draft genome sequences emanating from the event. With the aim of making the process of genome assembly and annotation more accessible to biologists, we provide a step-by-step guide to both genome assembly and annotation, intended to encourage and empower mycologists to use genome data in their research.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa