Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 84(5): 2511-21, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20032190

RESUMO

Viruses of the family Coronaviridae have recently emerged through zoonotic transmission to become serious human pathogens. The pathogenic agent responsible for severe acute respiratory syndrome (SARS), the SARS coronavirus (SARS-CoV), is a member of this large family of positive-strand RNA viruses that cause a spectrum of disease in humans, other mammals, and birds. Since the publicized outbreaks of SARS in China and Canada in 2002-2003, significant efforts successfully identified the causative agent, host cell receptor(s), and many of the pathogenic mechanisms underlying SARS. With this greater understanding of SARS-CoV biology, many researchers have sought to identify agents for the treatment of SARS. Here we report the utility of the potent antiviral protein griffithsin (GRFT) in the prevention of SARS-CoV infection both in vitro and in vivo. We also show that GRFT specifically binds to the SARS-CoV spike glycoprotein and inhibits viral entry. In addition, we report the activity of GRFT against a variety of additional coronaviruses that infect humans, other mammals, and birds. Finally, we show that GRFT treatment has a positive effect on morbidity and mortality in a lethal infection model using a mouse-adapted SARS-CoV and also specifically inhibits deleterious aspects of the host immunological response to SARS infection in mammals.


Assuntos
Proteínas de Algas , Antivirais , Infecções por Coronaviridae/tratamento farmacológico , Coronaviridae/efeitos dos fármacos , Lectinas , Proteínas de Algas/farmacologia , Proteínas de Algas/uso terapêutico , Sequência de Aminoácidos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Calorimetria , Linhagem Celular , Coronaviridae/genética , Coronaviridae/imunologia , Coronaviridae/patogenicidade , Infecções por Coronaviridae/imunologia , Infecções por Coronaviridae/mortalidade , Infecções por Coronaviridae/prevenção & controle , Citocinas/imunologia , Feminino , Humanos , Lectinas/farmacologia , Lectinas/uso terapêutico , Pulmão/patologia , Pulmão/virologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Dados de Sequência Molecular , Lectinas de Plantas , Ligação Proteica , Conformação Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/metabolismo , Zoonoses
2.
J Agric Food Chem ; 61(27): 6589-96, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23742120

RESUMO

Aryloxyalkanoate dioxygenase-12 (AAD-12) was discovered from the soil bacterium Delftia acidovorans MC1 and is a nonheme Fe(II)/α-ketoglutarate-dependent dioxygenase, which can impart herbicide tolerance to transgenic plants by catalyzing the degradation of certain phenoxyacetate, pyridyloxyacetate, and aryloxyphenoxypropionate herbicides. (1) The development of commercial herbicide-tolerant crops, in particular AAD-12-containing soybean, has prompted the need for large quantities of the enzyme for safety testing. To accomplish this, the enzyme was produced in Pseudomonas fluorescens (Pf) and purified to near homogeneity. A small amount of AAD-12 was partially purified from transgenic soybean and through various analytical, biochemical, and in vitro activity analyses demonstrated to be equivalent to the Pf-generated enzyme. Furthermore, results from in vitro kinetic analyses using a variety of plant endogenous compounds revealed activity with trans-cinnamate and indole-3-acetic acid (IAA). The catalytic efficiencies (kcat/Km) of AAD-12 using trans-cinnamate (51.5 M(-1) s(-1)) and IAA (8.2 M(-1) s(-1)) as substrates were very poor when compared to the efficiencies of plant endogenous enzymes. The results suggest that the presence of AAD-12 in transgenic soybean would not likely have an impact on major plant metabolic pathways.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dioxigenases/química , Dioxigenases/metabolismo , Glycine max/metabolismo , Herbicidas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Pseudomonas fluorescens/genética , Proteínas de Bactérias/genética , Dioxigenases/genética , Expressão Gênica , Resistência a Herbicidas , Herbicidas/farmacologia , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Cinética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Pseudomonas fluorescens/química , Pseudomonas fluorescens/metabolismo , Glycine max/química , Glycine max/efeitos dos fármacos , Glycine max/genética , Especificidade por Substrato
3.
PLoS One ; 7(4): e35409, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514740

RESUMO

Lunasin is a peptide derived from the soybean 2S albumin seed protein that has both anticancer and anti-inflammatory activities. Large-scale animal studies and human clinical trials to determine the efficacy of lunasin in vivo have been hampered by the cost of synthetic lunasin and the lack of a method for obtaining gram quantities of highly purified lunasin from plant sources. The goal of this study was to develop a large-scale method to generate highly purified lunasin from defatted soy flour. A scalable method was developed that utilizes the sequential application of anion-exchange chromatography, ultrafiltration, and reversed-phase chromatography. This method generates lunasin preparations of >99% purity with a yield of 442 mg/kg defatted soy flour. Mass spectrometry of the purified lunasin revealed that the peptide is 44 amino acids in length and represents the original published sequence of lunasin with an additional C-terminal asparagine residue. Histone-binding assays demonstrated that the biological activity of the purified lunasin was similar to that of synthetic lunasin. This study provides a robust method for purifying commercial-scale quantities of biologically-active lunasin and clearly identifies the predominant form of lunasin in soy flour. This method will greatly facilitate the development of lunasin as a potential nutraceutical or therapeutic anticancer agent.


Assuntos
Glycine max/química , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Proteínas de Soja/isolamento & purificação , Proteínas de Soja/metabolismo , Antineoplásicos , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Histonas/metabolismo , Humanos , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
4.
PLoS One ; 5(6): e11143, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20559567

RESUMO

The development of a topical microbicide blocking the sexual transmission of HIV-1 is urgently needed to control the global HIV/AIDS pandemic. The actinomycete-derived lectin actinohivin (AH) is highly specific to a cluster of high-mannose-type glycans uniquely found on the viral envelope (Env). Here, we evaluated AH's candidacy toward a microbicide in terms of in vitro anti-HIV-1 activity, potential side effects, and recombinant producibility. Two validated assay systems based on human peripheral blood mononuclear cell (hPBMC) infection with primary isolates and TZM-bl cell infection with Env-pseudotyped viruses were employed to characterize AH's anti-HIV-1 activity. In hPMBCs, AH exhibited nanomolar neutralizing activity against primary viruses with diverse cellular tropisms, but did not cause mitogenicity or cytotoxicity that are often associated with other anti-HIV lectins. In the TZM-bl-based assay, AH showed broad anti-HIV-1 activity against clinically-relevant, mucosally transmitting strains of clades B and C. By contrast, clade A viruses showed strong resistance to AH. Correlation analysis suggested that HIV-1's AH susceptibility is significantly linked to the N-glycans at the Env C2 and V4 regions. For recombinant (r)AH expression, we evaluated a tobacco mosaic virus-based system in Nicotiana benthamiana plants as a means to facilitate molecular engineering and cost-effective mass production. Biochemical analysis and an Env-mediated syncytium formation assay demonstrated high-level expression of functional rAH within six days. Taken together, our study revealed AH's cross-clade anti-HIV-1 activity, apparent lack of side effects common to lectins, and robust producibility using plant biotechnology. These findings justify further efforts to develop rAH toward a candidate HIV-1 microbicide.


Assuntos
Proteínas de Bactérias/farmacologia , HIV-1/imunologia , Testes de Neutralização , Linfócitos T/efeitos dos fármacos , Proteínas de Bactérias/genética , Proliferação de Células/efeitos dos fármacos , Células HeLa , Humanos , Mitógenos/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Linfócitos T/citologia , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa