Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(46): 29142-29151, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30426977

RESUMO

Crystalline surface-anchored metal-organic framework (SURMOF) thin films made from porphyrin-based organic linkers have recently been used in both photon upconversion and photovoltaic applications. While these studies showed promising results, the question of photostability in this organic-inorganic hybrid material has to be investigated before applications can be considered. Here, we combine steady-state photoluminescence, transient absorption, and time-resolved electron paramagnetic resonance spectroscopy to examine the effects of prolonged illumination on a palladium-porphyrin based SURMOF thin film. We find that phototreatment leads to a change in the material's photoresponse caused by the creation of stable products of photodecomposition - likely chlorin - inside the SURMOF structure. When the mobile triplet excitons encounter such a defect site, a short-lived (80 ns) cation-anion radical pair can be formed by electron transfer, wherein the charges are localized at a porphyrin and the photoproduct site, respectively.

2.
ACS Appl Mater Interfaces ; 11(17): 15688-15697, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30938507

RESUMO

Efficient photon-harvesting materials require easy-to-deposit materials exhibiting good absorption and excited-state transport properties. We demonstrate an organic thin-film material system, a palladium-porphyrin-based surface-anchored metal-organic framework (SURMOF) thin film that meets these requirements. Systematic investigations using transient absorption spectroscopy confirm that triplets are very mobile within single crystalline domains; a detailed analysis reveals a triplet transfer rate on the order of 1010 s-1. The crystalline nature of the SURMOFs also allows a thorough theoretical analysis using the density functional theory. The theoretical results reveal that the intermolecular exciton transfer can be described by a Dexter electron exchange mechanism that is considerably enhanced by virtual charge-transfer exciton intermediates. On the basis of the photophysical results, we predict exciton diffusion lengths on the order of several micrometers in perfectly ordered, single-crystalline SURMOFs. In the presently available samples, strong interactions of excitons with domain boundaries present in these metal-organic thin films limit the diffusion length to the diameter of these two-dimensional grains, which amount to about 100 nm. Our results demonstrate high potential of SURMOFs for light-harvesting applications.

3.
ACS Appl Mater Interfaces ; 10(30): 25754-25762, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30028121

RESUMO

Organic chromophores that exhibit aggregation-induced emission (AIE) are of interest for applications in displays, lighting, and sensing, because they can maintain efficient emission at high molecular concentrations in the solid state. Such advantages over conventional chromophores could allow thinner conversion layers of AIE chromophores to be realized, with benefits in terms of the efficiency of the optical outcoupling, thermal management, and response times. However, it is difficult to create large-area optical quality thin films of efficiently performing AIE chromophores. Here, we demonstrate that this can be achieved by using a surface-anchored metal-organic framework (SURMOF) thin film coating as a host substrate, into which the tetraphenylethylene (TPE)-based AIE chromophore can be printed. We demonstrate that the SURMOF constrains the AIE-chromophore molecular conformation, affording efficient performance even at low loading densities in the SURMOF. As the loading density of the AIE chromophore in the SURMOF is increased, its absorption and emission spectra are tuned due to increased interaction between AIE molecules, but the high photoluminescent quantum yield (PLQY = 50% for this AIE chromophore) is maintained. Lastly, we demonstrate that patterns of the AIE chromophore with 70 µm feature sizes can be easily created by inkjet printing onto the SURMOF substrate. These results foreshadow novel possibilities for the creation of patterned phosphor thin films utilizing AIE chromophores for display or lighting applications.

4.
Adv Mater ; 28(38): 8477-8482, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27500466

RESUMO

Triplet transfer across a surface-anchored metal-organic-framework heterojunction is demonstrated by the observation of triplet-triplet annihilation photon -upconversion in a sensitizer-emitter heterostructure. Upconversion thresholds under 1 mW cm-2 are achieved. In the broader context, the double-electron-exchange mechanism of triplet transfer indicates that the heterojunction quality is sufficient for electrons to move between layers in this solution-processed crystalline heterostructure.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa