Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(12): e2120933119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290127

RESUMO

The formation and differentiation of planetary bodies are dated using radioactive decay systems, including the short-lived 146Sm-142Nd (T½ = 103 or 68 Ma) and long-lived 147Sm-143Nd (T½ = 106 Ga) radiogenic pairs that provide relative and absolute ages, respectively. However, the initial abundance and half-life of the extinct radioactive isotope 146Sm are still debated, weakening the interpretation of 146Sm-142Nd systematics obtained for early planetary processes. Here, we apply the short-lived 26Al-26Mg, 146Sm-142Nd, and long-lived 147Sm-143Sm chronometers to the oldest known andesitic meteorite, Erg Chech 002 (EC 002), to constrain the Solar System initial abundance of 146Sm. The 26Al-26Mg mineral isochron of EC 002 provides a tightly constrained initial δ26Mg* of −0.009 ± 0.005 ‰ and (26Al/27Al)0 of (8.89 ± 0.09) × 10−6. This initial abundance of 26Al is the highest measured so far in an achondrite and corresponds to a crystallization age of 1.80 ± 0.01 Myr after Solar System formation. The 146Sm-142Nd mineral isochron returns an initial 146Sm/144Sm ratio of 0.00830 ± 0.00032. By combining the Al-Mg crystallization age and initial 146Sm/144Sm ratio of EC 002 with values for refractory inclusions, achondrites, and lunar samples, the best-fit half-life for 146Sm is 102 ± 9 Ma, corresponding to the physically measured value of 103 ± 5 Myr, rather than the latest and lower revised value of 68 ± 7 Ma. Using a half-life of 103 Ma for 146Sm, the 146Sm/144Sm abundance of EC 002 translates into an initial Solar System 146Sm/144Sm ratio of 0.00840 ± 0.00032, which represents the most reliable and precise estimate to date and makes EC 002 an ideal anchor for the 146Sm-142Nd clock.

2.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836612

RESUMO

The age of iron meteorites implies that accretion of protoplanets began during the first millions of years of the solar system. Due to the heat generated by 26Al decay, many early protoplanets were fully differentiated with an igneous crust produced during the cooling of a magma ocean and the segregation at depth of a metallic core. The formation and nature of the primordial crust generated during the early stages of melting is poorly understood, due in part to the scarcity of available samples. The newly discovered meteorite Erg Chech 002 (EC 002) originates from one such primitive igneous crust and has an andesite bulk composition. It derives from the partial melting of a noncarbonaceous chondritic reservoir, with no depletion in alkalis relative to the Sun's photosphere and at a high degree of melting of around 25%. Moreover, EC 002 is, to date, the oldest known piece of an igneous crust with a 26Al-26Mg crystallization age of 4,565.0 million years (My). Partial melting took place at 1,220 °C up to several hundred kyr before, implying an accretion of the EC 002 parent body ca. 4,566 My ago. Protoplanets covered by andesitic crusts were probably frequent. However, no asteroid shares the spectral features of EC 002, indicating that almost all of these bodies have disappeared, either because they went on to form the building blocks of larger bodies or planets or were simply destroyed.

3.
Nature ; 511(7509): 303-6, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25030166

RESUMO

The asteroid 4 Vesta was recently found to have two large impact craters near its south pole, exposing subsurface material. Modelling suggested that surface material in the northern hemisphere of Vesta came from a depth of about 20 kilometres, whereas the exposed southern material comes from a depth of 60 to 100 kilometres. Large amounts of olivine from the mantle were not seen, suggesting that the outer 100 kilometres or so is mainly igneous crust. Here we analyse the data on Vesta and conclude that the crust-mantle boundary (or Moho) is deeper than 80 kilometres.

4.
J Neuroradiol ; 47(4): 259-265, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32184117

RESUMO

BACKGROUND AND PURPOSE: Assess the evolution of gadolinium consumption and magnetic resonance imaging (MRI) scanners in France and Western Brittany (France) and compare regional practices between public and private hospitals for each organ specialty. MATERIAL AND METHODS: We collected data from national and universal health registries, and Western Brittany's health care structures, between 2011 and 2018, about the number of MR imaging exams and machines, the number of delivered GBCAs (gadolinium-based contrast agents), prescriptions and administration protocols. RESULTS: Over the last eight years, we observed an increase in the number of MRI machines implemented in France (62%), correlated with the increase of annual gadolinium consumption (amount of delivered GBCAs in kg, 64%), without modification of the annual quantity of gadolinium used per machine (2.7kg in 2018). In Western Brittany, gadolinium impact is assigned to neuroimaging exams (50% CI95% [45;56] of all the contrast-enhanced exams), followed by thorax and abdomen exams (23% CI95% [18;28]). The ratio of injected exams to all exams is greater in public than in private hospitals (respectively 48% CI95% [46;49] versus 29% CI95% [26;30]). CONCLUSION: Gadolinium consumption is increasing, correlated with the increase in the number of examinations carried out. Regionally, the main impact comes from neuroimaging exams. No change in practices has been observed in recent years despite some warnings about gadolinium deposits and environmental consequences.


Assuntos
Encéfalo/diagnóstico por imagem , Gadolínio/provisão & distribuição , Imageamento por Ressonância Magnética/estatística & dados numéricos , Meios de Contraste/provisão & distribuição , França , Humanos , Sistema de Registros
7.
Proc Natl Acad Sci U S A ; 111(48): 17029-32, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404309

RESUMO

Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include incomplete condensation from the solar nebula and volatile loss during energetic impacts. These processes are expected to each produce characteristic stable isotope signatures. However, processes of planetary differentiation may also modify the isotopic composition of geochemical reservoirs. Angrites are rare meteorites that crystallized only a few million years after calcium-aluminum-rich inclusions and exhibit extreme depletions in volatile elements relative to chondrites, making them ideal samples with which to study volatile element depletion in the early solar system. Here we present high-precision Si isotope data that show angrites are enriched in the heavy isotopes of Si relative to chondritic meteorites by 50-100 ppm/amu. Silicon is sufficiently volatile such that it may be isotopically fractionated during incomplete condensation or evaporative mass loss, but theoretical calculations and experimental results also predict isotope fractionation under specific conditions of metal-silicate differentiation. We show that the Si isotope composition of angrites cannot be explained by any plausible core formation scenario, but rather reflects isotope fractionation during impact-induced evaporation. Our results indicate planetesimals initially formed from volatile-rich material and were subsequently depleted in volatile elements during accretion.

8.
Proc Natl Acad Sci U S A ; 111(35): 12689-92, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136108

RESUMO

Volcanism is a substantial process during crustal growth on planetary bodies and well documented to have occurred in the early Solar System from the recognition of numerous basaltic meteorites. Considering the ureilite parent body (UPB), the compositions of magmas that formed a potential UPB crust and were complementary to the ultramafic ureilite mantle rocks are poorly constrained. Among the Almahata Sitta meteorites, a unique trachyandesite lava (with an oxygen isotope composition identical to that of common ureilites) documents the presence of volatile- and SiO2-rich magmas on the UPB. The magma was extracted at low degrees of disequilibrium partial melting of the UPB mantle. This trachyandesite extends the range of known ancient volcanic, crust-forming rocks and documents that volcanic rocks, similar in composition to trachyandesites on Earth, also formed on small planetary bodies ∼ 4.56 billion years ago. It also extends the volcanic activity on the UPB by ∼ 1 million years (Ma) and thus constrains the time of disruption of the body to later than 6.5 Ma after the formation of Ca-Al-rich inclusions.

11.
Chemosphere ; 352: 141487, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38373443

RESUMO

This paper summarizes the main guidelines for representing rare earth element (REE) abundance patterns, along with a review of the common mistakes or omissions that can alter REE plots and bias interpretations. It is specifically designed for ecotoxicologists and biologists, for whom the study of these elements has become an important field of research in recent years. Prior to applying REE diagrams to the study of living organisms, it is important to understand the rationale that led geochemists and cosmochemists to develop them. Used with the practical recommendations described here, these diagrams have the capacity to highlight fundamental processes taking place in the biosphere.


Assuntos
Monitoramento Ambiental , Metais Terras Raras , Metais Terras Raras/análise , Viés
12.
Mar Pollut Bull ; 199: 116034, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237244

RESUMO

Rare Earth Elements (REE) and several trace elements abundances in mussel's shells collected along the St. Lawrence River, the Estuary, and the Gulf of St. Lawrence (EGSL) reveal coherent chemical variations, with a sharp contrast between freshwater and seawater bivalves. In freshwater mussel's shells, Rare Earth Elements and Y (REY) patterns are rather flat. Their Mn and Ba concentrations are higher than those of EGSL mussel shells, which are much richer in Sr. Shale-normalized REY abundances in mussel's shells from the EGSL show positive anomalies in La and Y and well-marked negative anomalies in Ce, reflecting those of seawater. Prince Edward Island shells show light REE depletion relative to PAAS, positive La and Y anomalies, and negative Ce anomalies. Our data confirm the lack of detectable Gd pollution in the St. Lawrence River and in the EGSL, as well as Pb pollution at the mouth of the Saguenay Fjord and near Rimouski.


Assuntos
Bivalves , Metais Terras Raras , Oligoelementos , Poluentes Químicos da Água , Animais , Oligoelementos/análise , Monitoramento Ambiental , Metais Terras Raras/análise , Canadá , Poluentes Químicos da Água/análise
13.
Proc Natl Acad Sci U S A ; 106(17): 6904-9, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19366660

RESUMO

Micrometeorites with diameter approximately 100-200 microm dominate the flux of extraterrestrial matter on Earth. The vast majority of micrometeorites are chemically, mineralogically, and isotopically related to carbonaceous chondrites, which amount to only 2.5% of meteorite falls. Here, we report the discovery of the first basaltic micrometeorite (MM40). This micrometeorite is unlike any other basalt known in the solar system as revealed by isotopic data, mineral chemistry, and trace element abundances. The discovery of a new basaltic asteroidal surface expands the solar system inventory of planetary crusts and underlines the importance of micrometeorites for sampling the asteroids' surfaces in a way complementary to meteorites, mainly because they do not suffer dynamical biases as meteorites do. The parent asteroid of MM40 has undergone extensive metamorphism, which ended no earlier than 7.9 Myr after solar system formation. Numerical simulations of dust transport dynamics suggest that MM40 might originate from one of the recently discovered basaltic asteroids that are not members of the Vesta family. The ability to retrieve such a wealth of information from this tiny (a few micrograms) sample is auspicious some years before the launch of a Mars sample return mission.

14.
Talanta ; 233: 122446, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215098

RESUMO

In order to propose an optimal analytical procedure specific to ferromanganese (Fe-Mn) oxides, we investigated different modes of data acquisition using inductively coupled plasma mass spectrometry (ICP-MS). The results of trace element and Rare Earth Element (REE) determination in eight Fe-Mn nodules and crusts (FeMn-1, GSMC-1, GSMC-2, GSMC-3, GSPN-2, GSPN-3, NOD-A-1 and NOD-P-1) are presented here. The analytical procedure involves chemical dissolution of the Fe-Mn oxides and addition of a thulium (Tm) spike. The correction of measured values from potential isobaric interferences was investigated using both corrections based on mono-elemental solutions, and data acquisition in the high-resolution mode. The obtained results show that the high-resolution acquisition mode is unnecessary to achieve high quality data for REE in Fe-Mn oxides. Using our revised method, we provide a consistent set of precise and accurate values for eight widely used but poorly characterized certified reference materials.


Assuntos
Oligoelementos , Ferro , Manganês , Espectrometria de Massas , Óxidos , Túlio , Oligoelementos/análise
15.
Talanta ; 221: 121589, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076124

RESUMO

A simple ICP-MS procedure for the determination of trace element concentrations in GBCAs is described here. Abundances of most of the REEs, Y, Ba and Pb concentrations were determined. We confirm that GBCAs contain traces of non-Gd REEs, Y, Ba and Pb. REE patterns of the five GBCAs actually administered in France have been obtained. They display specific shapes that make it possible to identify the different Gd oxides oxides used by pharmaceutical laboratories to produce them. Our method enables us to quickly evaluate the quantities of impurities in these products and, if necessary, to follow the evolution of their quality in the future. The presence of small but not negligible quantities of Y and REEs other than Gd cannot be ignored in these products, and their behaviour in the human body must be considered. The concentrations measured for Pb and Ba, on the other hand, are much lower and do not pose any particular problems.

16.
Talanta ; 219: 121244, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887135

RESUMO

The determination of rare earth elements (REEs) and Y in carbonates can be complicated by low REE abundances and the presence of significant amounts of Ba resulting in problematic interferences when analysed by ICP-MS. We describe here a novel ion-exchange method using the DGA resin (TODGA), combined with addition of a Tm spike, which allows the separation of the REEs+Y as a whole prior to analysis using an Element XR ICP-MS. This method was validated with results obtained on three different reference carbonate materials (CAL-S, JLs-1 and BEAN, an in-house standard), yielding reproducibility levels better than 3% (RSD) in most cases. This new separation scheme is particularly well suited for carbonate samples having very low REE contents, but could be equally applied to various rock types and organic-rich sample matrices whenever quantitative Ba removal is required.

17.
Chemosphere ; : 142710, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936484
18.
Sci Rep ; 9(1): 8015, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142781

RESUMO

Gadolinium-based contrast agents (GBCAs), routinely used in magnetic resonance imaging (MRI), end up directly in coastal seawaters where gadolinium concentrations are now increasing. Because many aquatic species could be sensitive to this new pollution, we have evaluated the possibility of using shellfish to assess its importance. Gadolinium excesses recorded by scallop shells collected in Bay of Brest (Brittany, France) for more than 30 years do not reflect the overall consumption in GBCAs, but are largely controlled by one of them, the gadopentetate dimeglumine. Although its use has been greatly reduced in Europe over the last ten years, gadolinium excesses are still measured in shells. Thus, some gadolinium derived from other GBCAs is bioavailable and could have an impact on marine wildlife.


Assuntos
Meios de Contraste/análise , Monitoramento Ambiental/métodos , Gadolínio DTPA/análise , Pectinidae/química , Água do Mar/química , Poluentes Químicos da Água/análise , Exoesqueleto/química , Animais , Meios de Contraste/química , Meios de Contraste/toxicidade , Poluição Ambiental/prevenção & controle , França , Gadolínio DTPA/toxicidade , Imageamento por Ressonância Magnética/métodos , Pectinidae/efeitos dos fármacos , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade
19.
Nat Commun ; 9(1): 1327, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666368

RESUMO

Planetary formation models show that terrestrial planets are formed by the accretion of tens of Moon- to Mars-sized planetary embryos through energetic giant impacts. However, relics of these large proto-planets are yet to be found. Ureilites are one of the main families of achondritic meteorites and their parent body is believed to have been catastrophically disrupted by an impact during the first 10 million years of the solar system. Here we studied a section of the Almahata Sitta ureilite using transmission electron microscopy, where large diamonds were formed at high pressure inside the parent body. We discovered chromite, phosphate, and (Fe,Ni)-sulfide inclusions embedded in diamond. The composition and morphology of the inclusions can only be explained if the formation pressure was higher than 20 GPa. Such pressures suggest that the ureilite parent body was a Mercury- to Mars-sized planetary embryo.

20.
Sci Adv ; 4(3): eaao5928, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29600271

RESUMO

The Earth-Moon system likely formed as a result of a collision between two large planetary objects. Debate about their relative masses, the impact energy involved, and the extent of isotopic homogenization continues. We present the results of a high-precision oxygen isotope study of an extensive suite of lunar and terrestrial samples. We demonstrate that lunar rocks and terrestrial basalts show a 3 to 4 ppm (parts per million), statistically resolvable, difference in Δ17O. Taking aubrite meteorites as a candidate impactor material, we show that the giant impact scenario involved nearly complete mixing between the target and impactor. Alternatively, the degree of similarity between the Δ17O values of the impactor and the proto-Earth must have been significantly closer than that between Earth and aubrites. If the Earth-Moon system evolved from an initially highly vaporized and isotopically homogenized state, as indicated by recent dynamical models, then the terrestrial basalt-lunar oxygen isotope difference detected by our study may be a reflection of post-giant impact additions to Earth. On the basis of this assumption, our data indicate that post-giant impact additions to Earth could have contributed between 5 and 30% of Earth's water, depending on global water estimates. Consequently, our data indicate that the bulk of Earth's water was accreted before the giant impact and not later, as often proposed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa