Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Pharmacol Res ; 189: 106684, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36740150

RESUMO

KV1.5 channels are key players in the regulation of vascular tone and atrial excitability and their impairment is associated with cardiovascular diseases including pulmonary arterial hypertension (PAH) and atrial fibrillation (AF). Unfortunately, pharmacological strategies to improve KV1.5 channel function are missing. Herein, we aimed to study whether the chaperone sigma-1 receptor (S1R) is able to regulate these channels and represent a new strategy to enhance their function. By using different electrophysiological and molecular techniques in X. laevis oocytes and HEK293 cells, we demonstrate that S1R physically interacts with KV1.5 channels and regulate their expression and function. S1R induced a bimodal regulation of KV1.5 channel expression/activity, increasing it at low concentrations and decreasing it at high concentrations. Of note, S1R agonists (PRE084 and SKF10047) increased, whereas the S1R antagonist BD1047 decreased, KV1.5 expression and activity. Moreover, PRE084 markedly increased KV1.5 currents in pulmonary artery smooth muscle cells and attenuated vasoconstriction and proliferation in pulmonary arteries. We also show that both KV1.5 channels and S1R, at mRNA and protein levels, are clearly downregulated in samples from PAH and AF patients. Moreover, the expression of both genes showed a positive correlation. Finally, the ability of PRE084 to increase KV1.5 function was preserved under sustained hypoxic conditions, as an in vitro PAH model. Our study provides insight into the key role of S1R in modulating the expression and activity of KV1.5 channels and highlights the potential role of this chaperone as a novel pharmacological target for pathological conditions associated with KV1.5 channel dysfunction.


Assuntos
Fibrilação Atrial , Receptores sigma , Humanos , Células HEK293 , Pulmão/patologia , Artéria Pulmonar , Receptores sigma/metabolismo , Receptor Sigma-1
2.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569725

RESUMO

Recent evidence suggests that vitamin D is involved in the development of pulmonary arterial hypertension (PAH). The aim of this study was to analyze the electrophysiological and contractile properties of pulmonary arteries (PAs) in vitamin D receptor knockout mice (Vdr-/-). PAs were dissected and mounted in a wire myograph. Potassium membrane currents were recorded in freshly isolated PA smooth muscle cells (PASMCs) using the conventional whole-cell configuration of the patch-clamp technique. Potential vitamin D response elements (VDREs) in Kv7 channels coding genes were studied, and their protein expression was analyzed. Vdr-/- mice did not show a pulmonary hypertensive phenotype, as neither right ventricular hypertrophy nor endothelial dysfunction was apparent. However, resistance PA from these mice exhibited increased response to retigabine, a Kv7 activator, compared to controls and heterozygous mice. Furthermore, the current sensitive to XE991, a Kv7 inhibitor, was also higher in PASMCs from knockout mice. A possible VDRE was found in the gene coding for KCNE4, the regulatory subunit of Kv7.4. Accordingly, Vdr-/- mice showed an increased expression of KCNE4 in the lungs, with no changes in Kv7.1 and Kv7.4. These results indicate that the absence of Vdr in mice, as occurred with vitamin D deficient rats, is not sufficient to induce PAH. However, the contribution of Kv7 channel currents to the regulation of PA tone is increased in Vdr-/- mice, resembling animals and humans suffering from PAH.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Artéria Pulmonar , Animais , Humanos , Camundongos , Ratos , Canais de Potássio KCNQ/metabolismo , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Artéria Pulmonar/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/farmacologia , Vitamina D/metabolismo
3.
Am J Respir Crit Care Med ; 203(10): 1290-1305, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33306938

RESUMO

Rationale: Cigarette smoke is considered the chief leading cause of chronic obstructive pulmonary disease (COPD). Its impact on the progressive deterioration of airways has been extensively studied, but its direct effects on the pulmonary vasculature are less known. Objectives: To prove that pulmonary arterial remodeling in patients with COPD is not just a consequence of alveolar hypoxia but also due to the direct effects of cigarette smoke on the pulmonary vascular bed. Methods: We have used different molecular and cell biology approaches, as well as traction force microscopy, wire myography, and patch-clamp techniques in human cells and freshly isolated pulmonary arteries. In addition, we relied on in vivo models and human samples to analyze the effects of cigarette smoke on pulmonary vascular tone alterations. Measurements and Main Results: Cigarette smoke extract exposure directly promoted a hypertrophic, senescent phenotype that in turn contributed, through the secretion of inflammatory molecules, to an increase in the proliferative potential of nonexposed cells. Interestingly, these effects were significantly reversed by antioxidants. Furthermore, cigarette smoke extract affected cell contractility and dysregulated the expression and activity of the voltage-gated K+ channel Kv7.4. This contributed to the impairment of vasoconstriction and vasodilation responses. Most importantly, the levels of this channel were diminished in the lungs of smoke-exposed mice, smokers, and patients with COPD. Conclusions: Cigarette smoke directly contributes to pulmonary arterial remodeling through increased cell senescence, as well as vascular tone alterations because of diminished levels and function in the Kv7.4 channel. Strategies targeting these pathways may lead to novel therapies for COPD.


Assuntos
Canais de Potássio KCNQ/metabolismo , Artéria Pulmonar/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fumar/efeitos adversos , Remodelação Vascular/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Artéria Pulmonar/patologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos , Nicotiana , Vasoconstrição , Vasodilatação
4.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L627-L640, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726132

RESUMO

Vitamin D (VitD) receptor regulates the expression of several genes involved in signaling pathways affected in pulmonary hypertension (PH). VitD deficiency is highly prevalent in PH, and low levels are associated with poor prognosis. We investigated if VitD deficiency may predispose to or exacerbate PH. Male Wistar rats were fed with a standard or a VitD-free diet for 5 wk. Next, rats were further divided into controls or PH, which was induced by a single dose of Su-5416 (20 mg/kg) and exposure to hypoxia (10% O2) for 2 wk. VitD deficiency had no effect on pulmonary pressure in normoxic rats, indicating that, by itself, it does not trigger PH. However, it induced several moderate but significant changes characteristic of PH in the pulmonary arteries, such as increased muscularization, endothelial dysfunction, increased survivin, and reduced bone morphogenetic protein (Bmp) 4, Bmp6, DNA damage-inducible transcript 4, and K+ two-pore domain channel subfamily K member 3 (Kcnk3) expression. Myocytes isolated from pulmonary arteries from VitD-deficient rats had a reduced whole voltage-dependent potassium current density and acid-sensitive (TASK-like) potassium currents. In rats with PH induced by Su-5416 plus hypoxia, VitD-free diet induced a modest increase in pulmonary pressure, worsened endothelial function, increased the hyperreactivity to serotonin, arterial muscularization, decreased total and TASK-1 potassium currents, and further depolarized the pulmonary artery smooth muscle cell membrane. In human pulmonary artery smooth muscle cells from controls and patients with PH, the active form of VitD calcitriol significantly increased KCNK3 mRNA expression. Altogether, these data strongly suggest that the deficit in VitD induces pulmonary vascular dysfunction.


Assuntos
Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Deficiência de Vitamina D/metabolismo , Animais , Humanos , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Potenciais da Membrana/fisiologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Ratos Wistar , Vitamina D/metabolismo
5.
J Physiol ; 597(4): 1185-1197, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29717493

RESUMO

KEY POINTS: The expression of miR-1 is increased in lungs from the Hyp/Su5416 PAH rat model. Pulmonary artery smooth muscle cells from this animal model are more depolarized and show decreased expression and activity of voltage-dependent potassium channel (Kv)1.5. miR-1 directly targets Kv1.5 channels, reduces Kv1.5 activity and induces membrane depolarization. Antagomir-1 prevents Kv1.5 channel downregulation and the depolarization induced by hypoxia/Su5416 exposition. ABSTRACT: Impairment of the voltage-dependent potassium channel (Kv) plays a central role in the development of cardiovascular diseases, including pulmonary arterial hypertension (PAH). MicroRNAs are non-coding RNAs that regulate gene expression by binding to the 3'-untranslated region region of specific mRNAs. The present study aimed to analyse the effects of miR-1 on Kv channel function in pulmonary arteries (PA). Kv channel activity was studied in PA from healthy animals transfected with miR-1 or scrambled-miR. Kv currents were studied using the whole-cell configuration of the patch clamp technique. The characterization of the Kv1.5 currents was performed with the selective inhibitor DPO-1. miR-1 expression was increased and Kv1.5 channels were decreased in lungs from a rat model of PAH induced by hypoxia and Su5416. miR-1 transfection increased cell capacitance, reduced Kv1.5 currents and induced membrane depolarization in isolated pulmonary artery smooth muscle cells. A luciferase reporter assay indicated that KCNA5, which encodes Kv1.5 channels, is a direct target gene of miR-1. Incubation of PA with Su5416 and hypoxia (3% O2 ) increased miR-1 and induced a decline in Kv1.5 currents, which was prevented by antagomiR-1. In conclusion, these data indicate that miR-1 induces pulmonary artery smooth muscle cell hypertrophy and reduces the activity and expression of Kv channels, suggesting a pathophysiological role in PAH.


Assuntos
Hipertensão Pulmonar/metabolismo , Canal de Potássio Kv1.5/metabolismo , MicroRNAs/metabolismo , Artéria Pulmonar/metabolismo , Potenciais de Ação , Animais , Células COS , Hipóxia Celular , Chlorocebus aethiops , Regulação para Baixo , Hipertensão Pulmonar/etiologia , Indóis/toxicidade , Canal de Potássio Kv1.5/genética , Masculino , MicroRNAs/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Pirróis/toxicidade , Ratos , Ratos Wistar
6.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L711-L723, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30136611

RESUMO

Human immunodeficiency virus (HIV) infection is an established risk factor for pulmonary arterial hypertension (PAH); however, the pathogenesis of HIV-related PAH remains unclear. Since K+ channel dysfunction is a common marker in most forms of PAH, our aim was to analyze whether the expression of HIV proteins is associated with impairment of K+ channel function in the pulmonary vascular bed. HIV transgenic mice (Tg26) expressing seven of the nine HIV viral proteins and wild-type (WT) mice were used. Hemodynamic assessment was performed by echocardiography and catheterization. Vascular reactivity was studied in endothelium-intact pulmonary arteries. K+ currents were recorded in freshly isolated pulmonary artery smooth muscle cells (PASMC) using the patch-clamp technique. Gene expression was assessed using quantitative RT-PCR. PASMC from Tg26 mice had reduced K+ currents and were more depolarized than those from WT. Whereas voltage-gated K+ channel 1.5 (Kv1.5) currents were preserved, pH-sensitive noninactivating background currents ( IKN) were nearly abolished in PASMC from Tg26 mice. Tg26 mice had reduced lung expression of Kv7.1 and Kv7.4 channels and decreased responses to the Kv7.1 channel activator L-364,373 assessed by vascular reactivity and patch-clamp experimental approaches. Although we found pulmonary vascular remodeling and endothelial dysfunction in Tg26 mice, this was not accompanied by changes in hemodynamic parameters. In conclusion, the expression of HIV proteins in vivo impairs pH-sensitive IKN and Kv7 currents. This negative impact of HIV proteins in K+ channels was not sufficient to induce PAH, at least in mice, but may play a permissive or accessory role in the pathophysiology of HIV-associated PAH.


Assuntos
HIV-1/genética , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Hipertrofia Ventricular Direita/patologia , Músculo Liso Vascular/patologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Artéria Pulmonar/patologia , Transgenes/fisiologia , Animais , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Hipertrofia Ventricular Direita/metabolismo , Masculino , Potenciais da Membrana , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Artéria Pulmonar/metabolismo , Vasoconstrição
8.
Thorax ; 72(5): 460-471, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27701117

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is frequently observed in patients with acute respiratory distress syndrome (ARDS) and it is associated with an increased risk of mortality. Both acid sphingomyelinase (aSMase) activity and interleukin 6 (IL-6) levels are increased in patients with sepsis and correlate with worst outcomes, but their role in pulmonary vascular dysfunction pathogenesis has not yet been elucidated. Therefore, the aim of this study was to determine the potential contribution of aSMase and IL-6 in the pulmonary vascular dysfunction induced by lipopolysaccharide (LPS). METHODS: Rat or human pulmonary arteries (PAs) or their cultured smooth muscle cells (SMCs) were exposed to LPS, SMase or IL-6 in the absence or presence of a range of pharmacological inhibitors. The effects of aSMase inhibition in vivo with D609 on pulmonary arterial pressure and inflammation were assessed following intratracheal administration of LPS. RESULTS: LPS increased ceramide and IL-6 production in rat pulmonary artery smooth muscle cells (PASMCs) and inhibited pulmonary vasoconstriction induced by phenylephrine or hypoxia (HPV), induced endothelial dysfunction and potentiated the contractile responses to serotonin. Exogenous SMase and IL-6 mimicked the effects of LPS on endothelial dysfunction, HPV failure and hyperresponsiveness to serotonin in PA; whereas blockade of aSMase or IL-6 prevented LPS-induced effects. Finally, administration of the aSMase inhibitor D609 limited the development of endotoxin-induced PH and ventilation-perfusion mismatch. The protective effects of D609 were validated in isolated human PAs. CONCLUSIONS: Our data indicate that aSMase and IL-6 are not simply biomarkers of poor outcomes but pathogenic mediators of pulmonary vascular dysfunction in ARDS secondary to Gram-negative infections.


Assuntos
Hipertensão Pulmonar/metabolismo , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Artéria Pulmonar/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/farmacologia , Animais , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Células Cultivadas , Ceramidases/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Humanos , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Masculino , Músculo Liso Vascular/citologia , Norbornanos , Ratos , Ratos Wistar , Tiocarbamatos , Tionas/farmacologia , Vasoconstrição/efeitos dos fármacos
9.
Am J Physiol Regul Integr Comp Physiol ; 311(5): R858-R869, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27534880

RESUMO

The fetal cardiovascular responses to acute hypoxia include a redistribution of the cardiac output toward the heart and the brain at the expense of other organs, such as the intestine. We hypothesized that hypoxia exerts a direct effect on the mesenteric artery (MA) that may contribute to this response. Using wire myography, we investigated the response to hypoxia (Po2 ~2.5 kPa for 20 min) of isolated MAs from 15- to 21-day chicken embryos (E15, E19, E21), and 1- to 45-day-old chickens (P1, P3, P14, P45). Agonist-induced pretone or an intact endothelium were not required to obtain a consistent and reproducible response to hypoxia, which showed a pattern of initial rapid phasic contraction followed by a sustained tonic contraction. Phasic contraction was reduced by elimination of extracellular Ca2+ or by presence of the neurotoxin tetrodotoxin, the α1-adrenoceptor antagonist prazosin, or inhibitors of L-type voltage-gated Ca2+ channels (nifedipine), mitochondrial electron transport chain (rotenone and antimycin A), and NADPH oxidase (VAS2870). The Rho-kinase inhibitor Y27632 impaired both phasic and tonic contraction and, when combined with elimination of extracellular Ca2+, hypoxia-induced contraction was virtually abolished. Hypoxic MA contraction was absent at E15 but present from E19 and increased toward the first days posthatching. It then decreased during the first weeks of life and P45 MAs were unable to sustain hypoxia-induced contraction over time. In conclusion, the results of the present study demonstrate that hypoxic vasoconstriction is an intrinsic feature of chicken MA vascular smooth muscle cells during late embryogenesis and the perinatal period.


Assuntos
Hipóxia/fisiopatologia , Artérias Mesentéricas/embriologia , Artérias Mesentéricas/fisiopatologia , Músculo Liso Vascular/embriologia , Músculo Liso Vascular/fisiopatologia , Vasoconstrição , Animais , Embrião de Galinha , Desenvolvimento Embrionário , Contração Muscular
10.
Clin Sci (Lond) ; 130(20): 1823-36, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27413020

RESUMO

PPARß/δ activation protects against endothelial dysfunction in diabetic models. Elevated glucose is known to impair cAMP-induced relaxation and Kv channel function in coronary arteries (CA). Herein, we aimed to analyse the possible protective effects of the PPARß/δ agonist GW0742 on the hyperglycaemic-induced impairment of cAMP-induced relaxation and Kv channel function in rat CA. As compared with low glucose (LG), incubation under high glucose (HG) conditions attenuated the relaxation induced by the adenylate cyclase activator forskolin in CA and this was prevented by GW0742. The protective effect of GW0742 was supressed by a PPARß/δ antagonist. In myocytes isolated from CA under LG, forskolin enhanced Kv currents and induced hyperpolarization. In contrast, when CA were incubated with HG, Kv currents were diminished and the electrophysiological effects of forskolin were abolished. These deleterious effects were prevented by GW0742. The protective effects of GW0742 on forskolin-induced relaxation and Kv channel function were confirmed in CA from type-1 diabetic rats. In addition, the differences in the relaxation induced by forskolin in CA incubated under LG, HG or HG + GW0742 were abolished by the Kv7 channel inhibitor XE991. Accordingly, GW0742 prevented the down-regulation of Kv7 channels induced by HG. Finally, the preventive effect of GW0742 on oxidative stress and cAMP-induced relaxation were overcome by the pyruvate dehydrogenase kinase 4 (PDK4) inhibitor dichloroacetate (DCA). Our results reveal that the PPARß/δ agonist GW0742 prevents the impairment of the cAMP-mediated relaxation in CA under HG. This protective effect was associated with induction of PDK4, attenuation of oxidative stress and preservation of Kv7 channel function.


Assuntos
Vasos Coronários/metabolismo , AMP Cíclico/metabolismo , Hiperglicemia/metabolismo , Canal de Potássio KCNQ1/metabolismo , PPAR delta/metabolismo , PPAR beta/metabolismo , Animais , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Diabetes Mellitus Experimental , Humanos , Hiperglicemia/genética , Canal de Potássio KCNQ1/genética , Masculino , PPAR delta/genética , PPAR beta/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Tiazóis/administração & dosagem , Vasodilatação/efeitos dos fármacos
11.
Molecules ; 21(12)2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27999410

RESUMO

BACKGROUND: We hypothesized that treatment with quercetin could result in improved hemodynamics, lung inflammatory parameters and mortality in a rat model of hemorrhagic shock. METHODS: Rats were anesthetized (80 mg/kg ketamine plus 8 mg/kg xylazine i.p.). The protocol included laparotomy for 15 min (trauma), hemorrhagic shock (blood withdrawal to reduce the mean arterial pressure to 35 mmHg) for 75 min and resuscitation by re-infusion of all the shed blood plus lactate Ringer for 90 min. Intravenous quercetin (50 mg/kg) or vehicle were administered during resuscitation. RESULTS: There was a trend for increased survival 84.6% (11/13) in the treated group vs. the shock group 68.4% (13/19, p > 0.05 Kaplan-Meier). Quercetin fully prevented the development of lung edema. The activity of aSMase was increased in the shock group compared to the sham group and the quercetin prevented this effect. However, other inflammatory markers such as myeloperoxidase activity, interleukin-6 in plasma or bronchoalveolar fluid were similar in the sham and shock groups. We found no bacterial DNA in plasma in these animals. CONCLUSIONS: Quercetin partially prevented the changes in blood pressure and lung injury in shock associated to hemorrhage and reperfusion.


Assuntos
Quercetina/uso terapêutico , Choque Hemorrágico/tratamento farmacológico , Choque Traumático/tratamento farmacológico , Animais , Pressão Arterial/efeitos dos fármacos , Biomarcadores/sangue , Edema/prevenção & controle , Hemodinâmica , Inflamação/complicações , Inflamação/tratamento farmacológico , Interleucina-6/química , Soluções Isotônicas/uso terapêutico , Masculino , Peroxidase/química , Edema Pulmonar/complicações , Edema Pulmonar/tratamento farmacológico , Ratos , Ratos Wistar , Reperfusão , Ressuscitação , Lactato de Ringer , Choque Hemorrágico/complicações , Choque Traumático/complicações
12.
Vascul Pharmacol ; 155: 107371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599357

RESUMO

An effective pulmonary hypertension (PH) treatment should combine antiproliferative and vasodilator effects. We characterized a wide-range of drugs comparing their anti-proliferative vs vasodilator effects in human and rat pulmonary artery smooth muscle cells (PASMC). Key findings: 1) Approved PH drugs (PDE5 inhibitors, sGC stimulators and PGI2 agonists) are preferential vasodilators. 2) cGMP stimulators were more effective in cells derived from hypertensive rats. 3) Nifedipine acted equally as vasodilator and antiproliferative. 4) quercetin and imatinib were potent dual vasodilator/antiproliferative drugs. 5) Tacrolimus and levosimendan lacked antiproliferative effects. 6) Forskolin, pinacidil and hydroxyfasudil were more effective as antiproliferative in human cells.


Assuntos
Proliferação de Células , Hipertensão Pulmonar , Miócitos de Músculo Liso , Artéria Pulmonar , Vasodilatadores , Animais , Humanos , Proliferação de Células/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/metabolismo , Vasodilatadores/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Células Cultivadas , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Masculino , Ratos , Anti-Hipertensivos/farmacologia , Vasodilatação/efeitos dos fármacos
13.
Front Pharmacol ; 14: 1021535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063275

RESUMO

Background: Despite increasing evidence suggesting that pulmonary arterial hypertension (PAH) is a complex disease involving vasoconstriction, thrombosis, inflammation, metabolic dysregulation and vascular proliferation, all the drugs approved for PAH mainly act as vasodilating agents. Since excessive TGF-ß signaling is believed to be a critical factor in pulmonary vascular remodeling, we hypothesized that blocking TGFß-activated kinase 1 (TAK-1), alone or in combination with a vasodilator therapy (i.e., riociguat) could achieve a greater therapeutic benefit. Methods: PAH was induced in male Wistar rats by a single injection of the VEGF receptor antagonist SU5416 (20 mg/kg) followed by exposure to hypoxia (10%O2) for 21 days. Two weeks after SU5416 administration, vehicle, riociguat (3 mg/kg/day), the TAK-1 inhibitor 5Z-7-oxozeaenol (OXO, 3 mg/kg/day), or both drugs combined were administered for 7 days. Metabolic profiling of right ventricle (RV), lung tissues and PA smooth muscle cells (PASMCs) extracts were performed by magnetic resonance spectroscopy, and the differences between groups analyzed by multivariate statistical methods. Results: In vitro, riociguat induced potent vasodilator effects in isolated pulmonary arteries (PA) with negligible antiproliferative effects and metabolic changes in PASMCs. In contrast, 5Z-7-oxozeaenol effectively inhibited the proliferation of PASMCs characterized by a broad metabolic reprogramming but had no acute vasodilator effects. In vivo, treatment with riociguat partially reduced the increase in pulmonary arterial pressure (PAP), RV hypertrophy (RVH), and pulmonary vascular remodeling, attenuated the dysregulation of inosine, glucose, creatine and phosphocholine (PC) in RV and fully abolished the increase in lung IL-1ß expression. By contrast, 5Z-7-oxozeaenol significantly reduced pulmonary vascular remodeling and attenuated the metabolic shifts of glucose and PC in RV but had no effects on PAP or RVH. Importantly, combined therapy had an additive effect on pulmonary vascular remodeling and induced a significant metabolic effect over taurine, amino acids, glycolysis, and TCA cycle metabolism via glycine-serine-threonine metabolism. However, it did not improve the effects induced by riociguat alone on pulmonary pressure or RV remodeling. None of the treatments attenuated pulmonary endothelial dysfunction and hyperresponsiveness to serotonin in isolated PA. Conclusion: Our results suggest that inhibition of TAK-1 induces antiproliferative effects and its addition to short-term vasodilator therapy enhances the beneficial effects on pulmonary vascular remodeling and RV metabolic reprogramming in experimental PAH.

14.
Br J Pharmacol ; 180(18): 2361-2376, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37021655

RESUMO

BACKGROUND AND PURPOSE: Alcohol abuse has been associated with erectile dysfunction (ED), but the implicated molecular mechanisms are unresolved. This study analyses the role of alterations in soluble guanylyl cyclase (sGC) in ED. EXPERIMENTAL APPROACH: ED was analysed in adult male C57BL/6J mice subjected to the Chronic Intermittent Ethanol (CIE) paradigm. Erectile function was assessed in anaesthetised mice in vivo by evaluating intracavernosal pressure (ICP) and in vitro in isolated mice corpora cavernosa (CC) mounted in a myograph. Protein expression and reactive oxygen species were analysed by western blot and dihydroethidium staining, respectively. KEY RESULTS: In CIE mice, we observed a significant decrease in the relaxant response of the CC to stimulation of NO release from nitrergic nerves by electrical field stimulation, to NO release from endothelial cells by acetylcholine, to the PDE5 inhibitor sildenafil, and to the sGC stimulator riociguat. Conversely, the response to the sGC activator cinaciguat, whose action is independent of the oxidation state of sGC, was significantly enhanced in these CC. The responses to adenylyl cyclase stimulation with forskolin were unchanged. We found an increase in reactive oxygen species in the CC from CIE mice as well as an increase in CYP2E1 and NOX2 protein expression. In vivo pre-treatment with tempol prevented alcohol-induced erectile dysfunction. CONCLUSIONS AND IMPLICATIONS: Our results demonstrate that alcoholic mice show ED in vitro and in vivo due to an alteration in the redox state of sGC and suggest that sGC activators may be effective in ED associated with alcoholism.


Assuntos
Disfunção Erétil , Humanos , Camundongos , Masculino , Animais , Guanilil Ciclase Solúvel , Disfunção Erétil/etiologia , Guanilato Ciclase/metabolismo , Espécies Reativas de Oxigênio , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo
16.
Biomed Pharmacother ; 164: 114952, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295249

RESUMO

KV7 channels exert a pivotal role regulating vascular tone in several vascular beds. In this context, KV7 channel agonists represent an attractive strategy for the treatment of pulmonary arterial hypertension (PAH). Therefore, in this study, we have explored the pulmonary vascular effects of the novel KV7 channel agonist URO-K10. Consequently, the vasodilator and electrophysiological effects of URO-K10 were tested in rat and human pulmonary arteries (PA) and PA smooth muscle cells (PASMC) using myography and patch-clamp techniques. Protein expression was also determined by Western blot. Morpholino-induced knockdown of KCNE4 was assessed in isolated PA. PASMC proliferation was measured by BrdU incorporation assay. In summary, our data show that URO-K10 is a more effective relaxant of PA than the classical KV7 activators retigabine and flupirtine. URO-K10 enhanced KV currents in PASMC and its electrophysiological and relaxant effects were inhibited by the KV7 channel blocker XE991. The effects of URO-K10 were confirmed in human PA. URO-K10 also exhibited antiproliferative effects in human PASMC. Unlike retigabine and flupirtine, URO-K10-induced pulmonary vasodilation was not affected by morpholino-induced knockdown of the KCNE4 regulatory subunit. Noteworthy, the pulmonary vasodilator efficacy of this compound was considerably increased under conditions mimicking the ionic remodelling (as an in vitro model of PAH) and in PA from monocrotaline-induced pulmonary hypertensive rats. Taking all together, URO-K10 behaves as a KCNE4-independent KV7 channel activator with much increased pulmonary vascular effects compared to classical KV7 channel activators. Our study identifies a promising new drug in the context of PAH.


Assuntos
Canais de Potássio KCNQ , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Humanos , Ratos , Canais de Potássio KCNQ/genética , Morfolinos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Vasodilatadores/farmacologia
17.
Exp Physiol ; 97(5): 676-86, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22247283

RESUMO

Although type 1 and type 2 diabetes are strongly associated with systemic cardiovascular morbidity, the relationship with pulmonary vascular disease had been almost disregarded until recent epidemiological data revealed that diabetes might be a risk factor for pulmonary hypertension. Recent experimental studies suggest that diabetes induces changes in lung function insufficient to elevate pulmonary pressure. The aim of this study was to assess the effects of diabetes on the sensitivity to other risk factors for pulmonary hypertension. We therefore analysed the effects of the combination of diabetes with exposure to moderate hypoxia on classical markers of pulmonary hypertension. Control (saline-treated) and diabetic (70 mg kg(-1) streptozotocin-treated) male Wistar-Kyoto rats were followed for 4 weeks and exposed to normoxia or moderate normobaric hypoxia (14%) for another 2 weeks. Hypoxia, but not diabetes, strongly reduced voltage-gated potassium currents, whereas diabetes, but not hypoxia, induced pulmonary artery endothelial dysfunction. Both factors independently induced pulmonary vascular remodelling and downregulated the lung bone morphogenetic protein receptor type 2. However, diabetes, but not hypoxia, induced pulmonary infiltration of macrophages, which was markedly increased when both factors were combined. Diabetes plus hypoxia induced a modest increase in diastolic and mean pulmonary artery pressure and right ventricular weight, while each of the two factors alone had no significant effect. The pattern of changes in markers of pulmonary hypertension was different for moderate hypoxia and diabetes, with no synergic effect except for macrophage recruitment, and the combination of both factors was required to induce a moderate elevation in pulmonary arterial pressure.


Assuntos
Diabetes Mellitus Tipo 1/complicações , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Diabetes Mellitus Experimental/complicações , Regulação para Baixo , Hipertrofia Ventricular Direita/etiologia , Pulmão/patologia , Pulmão/fisiopatologia , Macrófagos/imunologia , Masculino , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Endogâmicos WKY , Doenças Vasculares/etiologia
18.
Cells ; 11(15)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35954255

RESUMO

HIV and Schistosoma infections have been individually associated with pulmonary vascular disease. Co-infection with these pathogens is very common in tropical areas, with an estimate of six million people co-infected worldwide. However, the effects of HIV and Schistosoma co-exposure on the pulmonary vasculature and its impact on the development of pulmonary vascular disease are largely unknown. Here, we have approached these questions by using a non-infectious animal model based on lung embolization of Schistosoma mansoni eggs in HIV-1 transgenic (HIV) mice. Schistosome-exposed HIV mice but not wild-type (Wt) counterparts showed augmented pulmonary arterial pressure associated with markedly suppressed endothelial-dependent vasodilation, increased endothelial remodeling and vessel obliterations, formation of plexiform-like lesions and a higher degree of perivascular fibrosis. In contrast, medial wall muscularization was similarly increased in both types of mice. Moreover, HIV mice displayed an impaired immune response to parasite eggs in the lung, as suggested by decreased pulmonary leukocyte infiltration, small-sized granulomas, and augmented residual egg burden. Notably, vascular changes in co-exposed mice were associated with increased expression of proinflammatory and profibrotic cytokines, including IFN-γ and IL-17A in CD4+ and γδ T cells and IL-13 in myeloid cells. Collectively, our study shows for the first time that combined pulmonary persistence of HIV proteins and Schistosoma eggs, as it may occur in co-infected people, alters the cytokine landscape and targets the vascular endothelium for aggravated pulmonary vascular pathology. Furthermore, it provides an experimental model for the understanding of pulmonary vascular disease associated with HIV and Schistosoma co-morbidity.


Assuntos
Infecções por HIV , Esquistossomose mansoni , Doenças Vasculares , Animais , Citocinas/metabolismo , Infecções por HIV/complicações , Infecções por HIV/patologia , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Schistosoma mansoni , Esquistossomose mansoni/complicações , Esquistossomose mansoni/patologia , Doenças Vasculares/patologia
19.
Biomolecules ; 11(6)2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073580

RESUMO

Background: Vitamin D (vitD) deficiency is highly prevalent in patients with pulmonary arterial hypertension (PAH). Moreover, PAH-patients with lower levels of vitD have worse prognosis. We hypothesize that recovering optimal levels of vitD in an animal model of PAH previously depleted of vitD improves the hemodynamics, the endothelial dysfunction and the ionic remodeling. Methods: Male Wistar rats were fed a vitD-free diet for five weeks and then received a single dose of Su5416 (20 mg/Kg) and were exposed to vitD-free diet and chronic hypoxia (10% O2) for three weeks to induce PAH. Following this, vitD deficient rats with PAH were housed in room air and randomly divided into two groups: (a) continued on vitD-free diet or (b) received an oral dose of 100,000 IU/Kg of vitD plus standard diet for three weeks. Hemodynamics, pulmonary vascular remodeling, pulmonary arterial contractility, and K+ currents were analyzed. Results: Recovering optimal levels of vitD improved endothelial function, measured by an increase in the endothelium-dependent vasodilator response to acetylcholine. It also increased the activity of TASK-1 potassium channels. However, vitD supplementation did not reduce pulmonary pressure and did not ameliorate pulmonary vascular remodeling and right ventricle hypertrophy. Conclusions: Altogether, these data suggest that in animals with PAH and severe deficit of vitD, restoring vitD levels to an optimal range partially improves some pathophysiological features of PAH.


Assuntos
Endotélio Vascular/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Hipertensão Arterial Pulmonar , Deficiência de Vitamina D , Vitamina D , Animais , Endotélio Vascular/patologia , Masculino , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Ratos , Ratos Wistar , Vitamina D/farmacocinética , Vitamina D/farmacologia , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/metabolismo , Deficiência de Vitamina D/patologia
20.
Antioxidants (Basel) ; 10(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494520

RESUMO

Current approved therapies for pulmonary hypertension (PH) aim to restore the balance between endothelial mediators in the pulmonary circulation. These drugs may exert vasodilator effects on poorly oxygenated vessels. This may lead to the derivation of blood perfusion towards low ventilated alveoli, i.e., producing ventilation-perfusion mismatch, with detrimental effects on gas exchange. The aim of this study is to analyze the oxygen-sensitivity in vitro of 25 drugs currently used or potentially useful for PH. Additionally, the study analyses the effectiveness of these vasodilators in the pulmonary vs the systemic vessels. Vasodilator responses were recorded in pulmonary arteries (PA) and mesenteric arteries (MA) from rats and in human PA in a wire myograph under different oxygen concentrations. None of the studied drugs showed oxygen selectivity, being equally or more effective as vasodilators under conditions of low oxygen as compared to high oxygen levels. The drugs studied showed low pulmonary selectivity, being equally or more effective as vasodilators in systemic than in PA. A similar behavior was observed for the members within each drug family. In conclusion, none of the drugs showed optimal vasodilator profile, which may limit their therapeutic efficacy in PH.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa