Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cancer Lett ; 526: 112-130, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826547

RESUMO

The cytoskeleton and cell-matrix adhesions constitute a dynamic network that controls cellular behavior during development and cancer. The Focal Adhesion Kinase (FAK) is a central actor of these cell dynamics, promoting cell-matrix adhesion turnover and active membrane fluctuations. However, the initial steps leading to FAK activation and subsequent promotion of cell dynamics remain elusive. Here, we report that the serine/threonine kinase PKCθ participates in the initial steps of FAK activation. PKCθ, which is strongly expressed in aggressive human breast cancers, controls the dynamics of cell-matrix adhesions and active protrusions through direct FAK activation, thereby promoting cell invasion and lung metastases. Using various tools for in vitro and live cell studies, we precisely decipher the molecular mechanisms of FAK activation. PKCθ directly interacts with the FAK FERM domain to open FAK conformation through PKCθ's specific V3 domain, while phosphorylating FAK at newly identified serine/threonine residues within nascent adhesions, inducing cell dynamics and aggressive behavior. This study thus places PKCθ-directed FAK opening and phosphorylations as an original mechanism controlling dynamic, migratory, and invasive abilities of aggressive breast cancer cells, further strengthening the emerging oncogenic function of PKCθ.


Assuntos
Neoplasias da Mama/fisiopatologia , Citoesqueleto/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Proteína Quinase C-theta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pseudópodes/metabolismo , Animais , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Feminino , Xenoenxertos , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação
2.
Cancer Discov ; 7(7): 716-735, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28416471

RESUMO

Chemotherapy-resistant human acute myeloid leukemia (AML) cells are thought to be enriched in quiescent immature leukemic stem cells (LSC). To validate this hypothesis in vivo, we developed a clinically relevant chemotherapeutic approach treating patient-derived xenografts (PDX) with cytarabine (AraC). AraC residual AML cells are enriched in neither immature, quiescent cells nor LSCs. Strikingly, AraC-resistant preexisting and persisting cells displayed high levels of reactive oxygen species, showed increased mitochondrial mass, and retained active polarized mitochondria, consistent with a high oxidative phosphorylation (OXPHOS) status. AraC residual cells exhibited increased fatty-acid oxidation, upregulated CD36 expression, and a high OXPHOS gene signature predictive for treatment response in PDX and patients with AML. High OXPHOS but not low OXPHOS human AML cell lines were chemoresistant in vivo. Targeting mitochondrial protein synthesis, electron transfer, or fatty-acid oxidation induced an energetic shift toward low OXPHOS and markedly enhanced antileukemic effects of AraC. Together, this study demonstrates that essential mitochondrial functions contribute to AraC resistance in AML and are a robust hallmark of AraC sensitivity and a promising therapeutic avenue to treat AML residual disease.Significance: AraC-resistant AML cells exhibit metabolic features and gene signatures consistent with a high OXPHOS status. In these cells, targeting mitochondrial metabolism through the CD36-FAO-OXPHOS axis induces an energetic shift toward low OXPHOS and strongly enhanced antileukemic effects of AraC, offering a promising avenue to design new therapeutic strategies and fight AraC resistance in AML. Cancer Discov; 7(7); 716-35. ©2017 AACR.See related commentary by Schimmer, p. 670This article is highlighted in the In This Issue feature, p. 653.


Assuntos
Citarabina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Animais , Antígenos CD36/genética , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Citarabina/efeitos adversos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Am J Pathol ; 165(6): 2013-8, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15579444

RESUMO

Recent studies have demonstrated the importance of lymphocytes, especially CD4(+) T cells, in early lesions of atherosclerosis in hypercholesterolemic mice. However, the role of other T cell subpopulations, like CD8(+) T cells or TCR gamma delta T lymphocytes, is not yet clear. We have therefore generated apolipoprotein E-deficient mice genetically deficient in specific T lymphocyte subpopulations and measured atherosclerotic lesions in the aortic sinus and en face whole aorta preparation at 18 weeks and at 1 year of age. Whereas TCR gamma delta(+) T lymphocytes appeared to play a modest role, TCR alpha beta(+) T lymphocytes played a major role as their deficiency significantly prevented early and late atherosclerosis at all arterial sites. However, neither CD4(+) nor CD8(+) T cells induced any significant decrease of the lesions at the aortic sinus, suggesting that compensatory proatherogenic mechanisms are operating at this site. Interestingly, the absence of CD4(+) T cells led to a dramatic increase in early lesion abundance at the level of the descending thoracic and abdominal aorta, which was still obvious at 1 year. In conclusion, whereas the TCR alpha beta(+) lymphocyte subset in its whole contribute to aggravate both early and late atherosclerosis, the CD4(+) T subpopulation appears to be critically protective at the level of the lower part of the aorta.


Assuntos
Apolipoproteínas E/deficiência , Arteriosclerose/etiologia , Linfócitos T CD4-Positivos/fisiologia , Receptores de Antígenos de Linfócitos T alfa-beta/fisiologia , Animais , Aorta , Arteriosclerose/metabolismo , Arteriosclerose/patologia , Linfócitos T CD8-Positivos/fisiologia , Cruzamentos Genéticos , Feminino , Deleção de Genes , Genótipo , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
J Biol Chem ; 279(18): 18648-55, 2004 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-14985352

RESUMO

Tumor necrosis factor (TNF) alpha-induced neutral sphingomyelinase-mediated generation of ceramide, a bioactive lipid molecule, is transduced by the adaptor protein FAN, which binds to the intracellular region of the CD120a TNFalpha receptor. FAN-deficient mice do not exhibit any gross abnormality. To further explore the functions of FAN in vivo and because CD120a-deficient mice are resistant to endotoxin-induced liver failure and lethality, we investigated the susceptibility of FAN-deficient animals to lipopolysaccharide (LPS). We show that after d-galactosamine sensitization, FAN-deficient mice were partially resistant to LPS- and TNFalpha-induced lethality. Although LPS challenge resulted in a hepatic ceramide content lower in mutant mice than in control animals, it triggered similar histological alterations, caspase activation, and DNA fragmentation in the liver. Interestingly, LPS-induced elevation of IL-6 (but not TNFalpha) serum concentrations was attenuated in FAN-deficient mice. A less pronounced secretion of IL-6 was also observed after LPS or TNFalpha treatment of cultured peritoneal macrophages and embryonic fibroblasts isolated from FAN-deficient mice, as well as in human fibroblasts expressing a mutated FAN. Finally, we show that d-galactosamine-sensitized IL-6-deficient mice were partially resistant to endotoxin-induced liver apoptosis and lethality. These findings highlight the role of FAN and IL-6 in the inflammatory response initiated by endotoxin, implicating TNFalpha.


Assuntos
Galactosamina/farmacologia , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Apoptose , Células Cultivadas , Ceramidas/análise , Resistência a Medicamentos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Galactosamina/administração & dosagem , Humanos , Interleucina-6/sangue , Peptídeos e Proteínas de Sinalização Intracelular , Lipopolissacarídeos/intoxicação , Fígado/química , Fígado/citologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Knockout , Taxa de Sobrevida , Fator de Necrose Tumoral alfa/intoxicação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa