Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(15): e2300309120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011209

RESUMO

Calmodulin (CaM) regulates many ion channels to control calcium entry into cells, and mutations that alter this interaction are linked to fatal diseases. The structural basis of CaM regulation remains largely unexplored. In retinal photoreceptors, CaM binds to the CNGB subunit of cyclic nucleotide-gated (CNG) channels and, thereby, adjusts the channel's Cyclic guanosine monophosphate (cGMP) sensitivity in response to changes in ambient light conditions. Here, we provide the structural characterization for CaM regulation of a CNG channel by using a combination of single-particle cryo-electron microscopy and structural proteomics. CaM connects the CNGA and CNGB subunits, resulting in structural changes both in the cytosolic and transmembrane regions of the channel. Cross-linking and limited proteolysis-coupled mass spectrometry mapped the conformational changes induced by CaM in vitro and in the native membrane. We propose that CaM is a constitutive subunit of the rod channel to ensure high sensitivity in dim light. Our mass spectrometry-based approach is generally relevant for studying the effect of CaM on ion channels in tissues of medical interest, where only minute quantities are available.


Assuntos
Calmodulina , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Calmodulina/metabolismo , Ativação do Canal Iônico/fisiologia , Microscopia Crioeletrônica , Cálcio/metabolismo , Nucleotídeos Cíclicos/farmacologia , GMP Cíclico/metabolismo
2.
J Struct Biol ; 214(1): 107828, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34971760

RESUMO

The recently reported structure of the human CNGA1/CNGB1 CNG channel in the open state (Xue et al., 2021a) shows that one CNGA1 and one CNGB1 subunit do not open the central hydrophobic gate completely upon cGMP binding. This is different from what has been reported for CNGA homomeric channels (Xue et al., 2021b; Zheng et al., 2020). In seeking to understand how this difference is due to the presence of the CNGB1 subunit, we find that the deposited density map (Xue et al., 2021a) (EMDB 24465) contains an additional density not reported in the images of the original publication. This additional density fits well the structure of calmodulin (CaM), and it unambiguously connects the newly identified D-helix of CNGB1 to one of the CNGA1 helices (A1R) participating in the coiled-coil region. Interestingly, the CNGA1 subunit that engages in the interaction with this additional density is the one that, together with CNGB1, does not open completely the central gate. The sequence of the D-helix of CNGB1 contains a known CaM-binding site of exquisitely high affinity - named CaM2 (Weitz et al., 1998) -, and thus the presence of CaM in that region is not surprising. The mechanism through which CaM reduces currents across the membrane by acting on the native channel (Bauer, 1996; Hsu and Molday, 1993; Weitz et al., 1998) remains unclear. We suggest that the presence of CaM may explain the partially open central gate reported by Xue et al. (2021a). The structure of the open and closed states of the CNGA1/CNGB1 channel may be different with and without CaM present.


Assuntos
Calmodulina , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Sítios de Ligação , Calmodulina/metabolismo , Microscopia Crioeletrônica , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Humanos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo
3.
Trends Neurosci ; 45(10): 763-776, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35934530

RESUMO

Cyclic nucleotide-gated (CNG) channels play a central role in rod and cone photoreceptors of the vertebrate retina. In photoreceptors, light triggers a series of biochemical reactions that ultimately close CNG channels and evoke a brief voltage pulse, a signal that is later passed on to the brain. Malfunction of CNG channels can lead to loss of vision. Thus, understanding their function in atomic and mechanistic detail is important. Because of the complex subunit stoichiometry of these channels, elucidation of their structure has proved challenging. Recently, several cryoelectron microscopy (EM) structures of rod and cone CNG channels revealed unexpected structural features. We compare these structures side by side and highlight similarities and differences in key structural elements. We discuss the implications of the channels' structure for questions about their gating, ion permeation, and modulation. These results inform new strategies to further characterize the structural basis of CNG channels functioning in rods and cones.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Células Fotorreceptoras Retinianas Cones , Microscopia Crioeletrônica , Humanos , Nucleotídeos Cíclicos , Retina , Células Fotorreceptoras Retinianas Cones/fisiologia
4.
Nat Struct Mol Biol ; 29(1): 32-39, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34969975

RESUMO

In rod photoreceptors of the retina, the cyclic nucleotide-gated (CNG) channel is composed of three CNGA and one CNGB subunits, and it closes in response to light activation to generate an electrical signal that is conveyed to the brain. Here we report the cryo-EM structure of the closed state of the native rod CNG channel isolated from bovine retina. The structure reveals differences between CNGA1 and CNGB1 subunits. Three CNGA1 subunits are tethered at their C terminus by a coiled-coil region. The C-helix in the cyclic nucleotide-binding domain of CNGB1 features a different orientation from that in the three CNGA1 subunits. The arginine residue R994 of CNGB1 reaches into the ionic pathway and blocks the pore, thus introducing an additional gate, which is different from the central hydrophobic gate known from homomeric CNGA channels. These results address the long-standing question of how CNGB1 subunits contribute to the function of CNG channels in visual and olfactory neurons.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Sequência Conservada , Canais de Cátion Regulados por Nucleotídeos Cíclicos/ultraestrutura , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa