RESUMO
Prolonged deficits in neural input activate pathological muscle remodeling, leading to atrophy. In denervated muscle, activation of the atrophy program requires HDAC4, a potent repressor of the master muscle transcription factor MEF2. However, the signaling mechanism that connects HDAC4, a protein deacetylase, to the atrophy machinery remains unknown. Here, we identify the AP1 transcription factor as a critical target of HDAC4 in neurogenic muscle atrophy. In denervated muscle, HDAC4 activates AP1-dependent transcription, whereas AP1 inactivation recapitulates HDAC4 deficiency and blunts the muscle atrophy program. We show that HDAC4 activates AP1 independently of its canonical transcriptional repressor activity. Surprisingly, HDAC4 stimulates AP1 activity by activating the MAP kinase cascade. We present evidence that HDAC4 binds and promotes the deacetylation and activation of a key MAP3 kinase, MEKK2. Our findings establish an HDAC4-MAPK-AP1 signaling axis essential for neurogenic muscle atrophy and uncover a direct crosstalk between acetylation- and phosphorylation-dependent signaling cascades.
Assuntos
Histona Desacetilases/metabolismo , MAP Quinase Quinase Quinase 2/metabolismo , Músculo Esquelético/metabolismo , Fator de Transcrição AP-1/metabolismo , Acetilação , Animais , Western Blotting , Linhagem Celular , Células HEK293 , Histona Desacetilases/genética , Humanos , MAP Quinase Quinase Quinase 2/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Denervação Muscular , Músculo Esquelético/inervação , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Fosforilação , Ligação Proteica , Interferência de RNA , Fator de Transcrição AP-1/genéticaRESUMO
Divalent metal-ion transporter-1 (DMT1) is a widely expressed iron-preferring membrane-transport protein that serves a critical role in erythroid iron utilization. We have investigated its role in intestinal metal absorption by studying a mouse model lacking intestinal DMT1 (i.e., DMT1(int/int)). DMT1(int/int) mice exhibited a profound hypochromic-microcytic anemia, splenomegaly, and cardiomegaly. That the anemia was due to iron deficiency was demonstrated by the following observations in DMT1(int/int) mice: 1) blood iron and tissue nonheme-iron stores were depleted; 2) mRNA expression of liver hepcidin (Hamp1) was depressed; and 3) intraperitoneal iron injection corrected the anemia, and reversed the changes in blood iron, nonheme-iron stores, and hepcidin expression levels. We observed decreased total iron content in multiple tissues from DMT1(int/int) mice compared with DMT1(+/+) mice but no meaningful change in copper, manganese, or zinc. DMT1(int/int) mice absorbed (64)Cu and (54)Mn from an intragastric dose to the same extent as did DMT1(+/+) mice but the absorption of (59)Fe was virtually abolished in DMT1(int/int) mice. This study reveals a critical function for DMT1 in intestinal nonheme-iron absorption for normal growth and development. Further, this work demonstrates that intestinal DMT1 is not required for the intestinal transport of copper, manganese, or zinc.
Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Absorção Intestinal/fisiologia , Ferro/metabolismo , Manganês/metabolismo , Anemia Hipocrômica/genética , Anemia Hipocrômica/patologia , Animais , Proteínas de Transporte de Cátions/genética , Transportador de Cobre 1 , Regulação da Expressão Gênica/fisiologia , Homeostase/fisiologia , Camundongos , Camundongos Knockout , Zinco/metabolismoRESUMO
Increased intracellular iron spurs mitochondrial biogenesis and respiration to satisfy high-energy demand during osteoclast differentiation and bone-resorbing activities. Transferrin receptor 1 (Tfr1) mediates cellular iron uptake through endocytosis of iron-loaded transferrin, and its expression increases during osteoclast differentiation. Nonetheless, the precise functions of Tfr1 and Tfr1-mediated iron uptake in osteoclast biology and skeletal homeostasis remain incompletely understood. To investigate the role of Tfr1 in osteoclast lineage cells in vivo and in vitro, we crossed Tfrc (encoding Tfr1)-floxed mice with Lyz2 (LysM)-Cre and Cathepsin K (Ctsk)-Cre mice to generate Tfrc conditional knockout mice in myeloid osteoclast precursors (Tfr1ΔLysM) or differentiated osteoclasts (Tfr1ΔCtsk), respectively. Skeletal phenotyping by µCT and histology unveiled a significant increase in trabecular bone mass with normal osteoclast number in long bones of 10-week-old young and 6-month-old adult female but not male Tfr1ΔLysM mice. Although high trabecular bone volume in long bones was observed in both male and female Tfr1ΔCtsk mice, this phenotype was more pronounced in female knockout mice. Consistent with this gender-dependent phenomena, estrogen deficiency induced by ovariectomy decreased trabecular bone mass in Tfr1ΔLysM mice. Mechanistically, disruption of Tfr1 expression attenuated mitochondrial metabolism and cytoskeletal organization in mature osteoclasts in vitro by attenuating mitochondrial respiration and activation of the Src-Rac1-WAVE regulatory complex axis, respectively, leading to decreased bone resorption with little impact on osteoclast differentiation. These results indicate that Tfr1-mediated iron uptake is specifically required for osteoclast function and is indispensable for bone remodeling in a gender-dependent manner.
Assuntos
Reabsorção Óssea , Ferro , Osteoclastos , Receptores da Transferrina , Animais , Reabsorção Óssea/patologia , Citoesqueleto/metabolismo , Feminino , Ferro/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Osteoclastos/metabolismo , Receptores da Transferrina/genéticaRESUMO
The composition of skeletal muscle, in terms of the relative number of slow- and fast-twitch fibers, is tightly regulated to enable an organism to respond and adapt to changing physical demands. The phosphatase calcineurin and its downstream targets, transcription factors of the nuclear factor of activated T cells (NFAT) family, play a critical role in this process by promoting the formation of slow-twitch, oxidative fibers. Calcineurin binds to calsarcins, a family of striated muscle-specific proteins of the sarcomeric Z-disc. We show here that mice deficient in calsarcin-2, which is expressed exclusively by fast-twitch muscle and encoded by the myozenin 1 (Myoz1) gene, have substantially reduced body weight and fast-twitch muscle mass in the absence of an overt myopathic phenotype. Additionally, Myoz1 KO mice displayed markedly improved performance and enhanced running distances in exercise studies. Analysis of fiber type composition of calsarcin-2-deficient skeletal muscles showed a switch toward slow-twitch, oxidative fibers. Reporter assays in cultured myoblasts indicated an inhibitory role for calsarcin-2 on calcineurin, and Myoz1 KO mice exhibited both an excess of NFAT activity and an increase in expression of regulator of calcineurin 1-4 (RCAN1-4), indicating enhanced calcineurin signaling in vivo. Taken together, these results suggest that calsarcin-2 modulates exercise performance in vivo through regulation of calcineurin/NFAT activity and subsequent alteration of the fiber type composition of skeletal muscle.
Assuntos
Calcineurina/metabolismo , Proteínas Musculares/deficiência , Fatores de Transcrição NFATC/metabolismo , Condicionamento Físico Animal , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/ultraestrutura , Linhagem Celular , Genes Reporter , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos , Modelos Biológicos , Fibras Musculares de Contração Lenta/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/ultraestrutura , Mioblastos/citologia , Mioblastos/metabolismoRESUMO
Signaling by the calcium-dependent phosphatase calcineurin profoundly influences the growth and gene expression of cardiac and skeletal muscle. Calcineurin binds to calsarcins, a family of muscle-specific proteins of the sarcomeric Z-disc, a focal point in the pathogenesis of human cardiomyopathies. We show that calsarcin-1 negatively modulates the functions of calcineurin, such that calcineurin signaling was enhanced in striated muscles of mice that do not express calsarcin-1. As a consequence of inappropriate calcineurin activation, mice with a null mutation in calsarcin-1 showed an excess of slow skeletal muscle fibers. The absence of calsarcin-1 also activated a hypertrophic gene program, despite the absence of hypertrophy, and enhanced the cardiac growth response to pressure overload. In contrast, cardiac adaptation to other hypertrophic stimuli, such as chronic catecholamine stimulation or exercise, was not affected. These findings show important roles for calsarcins as modulators of calcineurin signaling and the transmission of a specific subset of stress signals leading to cardiac remodeling in vivo.
Assuntos
Calcineurina/metabolismo , Cardiomiopatias/metabolismo , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Proteínas Musculares/deficiência , Transdução de Sinais , Agonistas Adrenérgicos beta/farmacologia , Animais , Fenômenos Biomecânicos , Inibidores de Calcineurina , Proteínas de Transporte/genética , Primers do DNA , Proteínas de Ligação a DNA , Ecocardiografia , Coração/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Isoproterenol/farmacologia , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Proteínas Musculares/genética , Proteínas Musculares/farmacologia , Músculo Esquelético/metabolismo , Mutação/genética , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Condicionamento Físico Animal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcômeros/metabolismo , Estresse Fisiológico/metabolismo , beta-GalactosidaseRESUMO
Histone deacetylase 4 (HDAC4) binds and inhibits activation of the critical muscle transcription factor myocyte enhancer factor-2 (MEF2). However, the physiological significance of the HDAC4-MEF2 complex in skeletal muscle has not been established. Here we show that in skeletal muscle, HDAC4 is a critical modulator of MEF2-dependent structural and contractile gene expression in response to neural activity. We present evidence that loss of neural input leads to concomitant nuclear accumulation of HDAC4 and transcriptional reduction of MEF2-regulated gene expression. Cell-based assays show that HDAC4 represses structural gene expression via direct binding to AT-rich MEF2 response elements. Notably, using both surgical denervation and the neuromuscular disease amyotrophic lateral sclerosis (ALS) model, we found that elevated levels of HDAC4 are required for efficient repression of MEF2-dependent structural gene expression, indicating a link between the pathological induction of HDAC4 and subsequent MEF2 target gene suppression. Supporting this supposition, we show that ectopic expression of HDAC4 in muscle fibers is sufficient to induce muscle damage in mice. Our study identifies HDAC4 as an activity-dependent regulator of MEF2 function and suggests that activation of HDAC4 in response to chronically reduced neural activity suppresses MEF2-dependent gene expression and contributes to progressive muscle dysfunction observed in neuromuscular diseases.
Assuntos
Regulação da Expressão Gênica/fisiologia , Histona Desacetilases/metabolismo , Células Musculares/metabolismo , Fatores de Regulação Miogênica/metabolismo , Neurônios/fisiologia , Proteínas Repressoras/metabolismo , Animais , Linhagem Celular , Histona Desacetilases/genética , Fatores de Transcrição MEF2 , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas Repressoras/genéticaRESUMO
Supplemental Digital Content is available in the text.
RESUMO
Osteoclasts are multinucleated cells of the monocyte/macrophage lineage that degrade bone. Here, we used lineage tracing studies-labelling cells expressing Cx3cr1, Csf1r or Flt3-to identify the precursors of osteoclasts in mice. We identified an erythromyeloid progenitor (EMP)-derived osteoclast precursor population. Yolk-sac macrophages of EMP origin produced neonatal osteoclasts that can create a space for postnatal bone marrow haematopoiesis. Furthermore, EMPs gave rise to long-lasting osteoclast precursors that contributed to postnatal bone remodelling in both physiological and pathological settings. Our single-cell RNA-sequencing data showed that EMP-derived osteoclast precursors arose independently of the haematopoietic stem cell (HSC) lineage and the data from fate tracking of EMP and HSC lineages indicated the possibility of cell-cell fusion between these two lineages. Cx3cr1+ yolk-sac macrophage descendants resided in the adult spleen, and parabiosis experiments showed that these cells migrated through the bloodstream to the remodelled bone after injury.
Assuntos
Hematopoese/fisiologia , Homeostase/fisiologia , Osteoclastos/metabolismo , Saco Vitelino/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/metabolismo , CamundongosRESUMO
ß-catenin protein needs to be precisely regulated for effective fracture repair. The pace of fracture healing slows with age, associated with a transient increase in ß-catenin during the initial phase of the repair process. Here we examined the ability of pharmacologic agents that target ß-catenin to improve the quality of fracture repair in old mice. 20 month old mice were treated with Nefopam or the tankyrase inhibitor XAV939 after a tibia fracture. Fractures were examined 21 days later by micro-CT and histology, and 28 days later using mechanical testing. Daily treatment with Nefopam for three or seven days but not ten days improved the amount of bone present at the fracture site, inhibited ß-catenin protein level, and increased colony forming units osteoblastic from bone marrow cells. At 28 days, treatment increased the work to fracture of the injured tibia. XAV939 had a more modest effect on ß-catenin protein, colony forming units osteoblastic, and the amount of bone at the fracture site. This data supports the notion that high levels of ß-catenin in the early phase of fracture healing in old animals slows osteogenesis, and suggests a pharmacologic approach that targets ß-catenin to improve fracture repair in the elderly.
Assuntos
Consolidação da Fratura/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Nefopam/farmacologia , Fraturas da Tíbia/metabolismo , beta Catenina/metabolismo , Analgésicos não Narcóticos/farmacologia , Animais , Masculino , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Tanquirases/antagonistas & inibidores , Tanquirases/metabolismo , Tíbia/efeitos dos fármacos , Tíbia/lesões , Tíbia/metabolismo , Fraturas da Tíbia/fisiopatologia , Fatores de TempoRESUMO
Myocardin and the myocardin-related transcription factors (MRTFs) MRTF-A and MRTF-B are coactivators for serum response factor (SRF), which regulates genes involved in cell proliferation, migration, cytoskeletal dynamics, and myogenesis. MRTF-A has been shown to translocate to the nucleus and activate SRF in response to Rho signaling and actin polymerization. Previously, we described a muscle-specific actin-binding protein named striated muscle activator of Rho signaling (STARS) that also activates SRF through a Rho-dependent mechanism. Here we show that STARS activates SRF by inducing the nuclear translocation of MRTFs. The STARS-dependent nuclear import of MRTFs requires RhoA and actin polymerization, and the actin-binding domain of STARS is necessary and sufficient for this activity. A knockdown of endogenous STARS expression by using small interfering RNA significantly reduced SRF activity in differentiated C2C12 skeletal muscle cells and cardiac myocytes. The ability of STARS to promote the nuclear localization of MRTFs and SRF-mediated transcription provides a potential muscle-specific mechanism for linking changes in actin dynamics and sarcomere structure with striated muscle gene expression.
Assuntos
Actinas/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas dos Microfilamentos/fisiologia , Desenvolvimento Muscular/fisiologia , Proteínas de Fusão Oncogênica/metabolismo , Fator de Resposta Sérica/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Linhagem Celular , Núcleo Celular/química , Proteínas de Ligação a DNA/análise , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/metabolismo , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/análise , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/análise , Fatores de Transcrição/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
The pace of repair declines with age and, while exposure to a young circulation can rejuvenate fracture repair, the cell types and factors responsible for rejuvenation are unknown. Here we report that young macrophage cells produce factors that promote osteoblast differentiation of old bone marrow stromal cells. Heterochronic parabiosis exploiting young mice in which macrophages can be depleted and fractionated bone marrow transplantation experiments show that young macrophages rejuvenate fracture repair, and old macrophage cells slow healing in young mice. Proteomic analysis of the secretomes identify differential proteins secreted between old and young macrophages, such as low-density lipoprotein receptor-related protein 1 (Lrp1). Lrp1 is produced by young cells, and depleting Lrp1 abrogates the ability to rejuvenate fracture repair, while treating old mice with recombinant Lrp1 improves fracture healing. Macrophages and proteins they secrete orchestrate the fracture repair process, and young cells produce proteins that rejuvenate fracture repair in mice.
Assuntos
Consolidação da Fratura , Fraturas Ósseas/fisiopatologia , Macrófagos/metabolismo , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Feminino , Fraturas Ósseas/genética , Fraturas Ósseas/metabolismo , Fraturas Ósseas/terapia , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Receptores de LDL/genética , Rejuvenescimento , Células Estromais/citologia , Células Estromais/metabolismo , Células Estromais/transplante , Proteínas Supressoras de Tumor/genéticaRESUMO
Both iron overload and iron deficiency have been associated with cardiomyopathy and heart failure, but cardiac iron utilization is incompletely understood. We hypothesized that the transferrin receptor (Tfr1) might play a role in cardiac iron uptake and used gene targeting to examine the role of Tfr1 in vivo. Surprisingly, we found that decreased iron, due to inactivation of Tfr1, was associated with severe cardiac consequences. Mice lacking Tfr1 in the heart died in the second week of life and had cardiomegaly, poor cardiac function, failure of mitochondrial respiration, and ineffective mitophagy. The phenotype could only be rescued by aggressive iron therapy, but it was ameliorated by administration of nicotinamide riboside, an NAD precursor. Our findings underscore the importance of both Tfr1 and iron in the heart, and may inform therapy for patients with heart failure.
Assuntos
Cardiomiopatias/genética , Miocárdio/metabolismo , Receptores da Transferrina/genética , Animais , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/patologia , Respiração Celular , Ferro/metabolismo , Camundongos , Mitofagia , Miocárdio/patologia , Niacinamida/análogos & derivados , Niacinamida/uso terapêutico , Compostos de Piridínio , Receptores da Transferrina/metabolismoRESUMO
Transferrin receptor (Tfr1) is ubiquitously expressed, but its roles in non-hematopoietic cells are incompletely understood. We used a tissue-specific conditional knockout strategy to ask whether skeletal muscle required Tfr1 for iron uptake. We found that iron assimilation via Tfr1 was critical for skeletal muscle metabolism, and that iron deficiency in muscle led to dramatic changes, not only in muscle, but also in adipose tissue and liver. Inactivation of Tfr1 incapacitated normal energy production in muscle, leading to growth arrest and a muted attempt to switch to fatty acid ß oxidation, using up fat stores. Starvation signals stimulated gluconeogenesis in the liver, but amino acid substrates became limiting and hypoglycemia ensued. Surprisingly, the liver was also iron deficient, and production of the iron regulatory hormone hepcidin was depressed. Our observations reveal a complex interaction between iron homeostasis and metabolism that has implications for metabolic and iron disorders.
Assuntos
Músculos/metabolismo , Receptores da Transferrina/deficiência , Animais , Análise por Conglomerados , Regulação da Expressão Gênica , Genes Letais , Deficiências de Ferro , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/patologia , Fígado/metabolismo , Metaboloma , Metabolômica/métodos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculos/patologia , Fosforilação Oxidativa , Fenótipo , Receptores da Transferrina/genéticaRESUMO
Transition metals are frequently used as cofactors for enzymes and oxygen-carrying proteins that take advantage of their propensity to gain and lose single electrons. Metals are particularly important in mitochondria, where they play essential roles in the production of ATP and detoxification of reactive oxygen species. At the same time, transition metals (particularly Fe and Cu) can promote the formation of harmful radicals, necessitating meticulous control of metal concentration and subcellular compartmentalization. We summarize our current understanding of Fe and Cu in mammalian mitochondrial biology and discuss human diseases associated with aberrations in mitochondrial metal homeostasis.
Assuntos
Heme/biossíntese , Homeostase/fisiologia , Proteínas Ferro-Enxofre/biossíntese , Ferro/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/fisiopatologia , Modelos Biológicos , HumanosRESUMO
TBX3 is a transcription factor of the T-box gene family. Mutations in the TBX3 gene can cause hypoplastic or absent mammary glands. Previous studies have shown that TBX3 might be associated with breast cancer. Here, we show that TBX3 is overexpressed in malignant cells of primary breast cancer tissues by immunohistochemistry. TBX3 interacts with histone deacetylases (HDAC) 1, 2, 3, and 5. TBX3 interacts with HDAC1, 2, and 3 via two distinct binding sites. However, deletion of the repression domain (amino acids 566-624) of TBX3 completely abolishes its interaction with HDAC5. Endogenous TBX3 and HDACs interaction and colocalization are found in a breast cancer cell line by coimmunoprecipitation and immunofluorescence, respectively. The functional significance of the interaction between TBX3 and HDAC is also tested in a p14(ARF)-luciferase reporter system. Results indicate that TBX3 represses expression of p14(ARF) tumor suppressor and that a HDAC inhibitor is able to reverse the TBX3 repressive function in a dosage-dependent manner. This study suggests that TBX3 may function by recruiting HDACs to the T-box binding site in the promoter region. TBX3 repression to its targets is dependent on HDAC activity. TBX3 may serve as a biomarker for breast cancer and have significant applications in both breast cancer diagnosis and treatment.
Assuntos
Neoplasias da Mama/metabolismo , Histona Desacetilases/metabolismo , Proteínas com Domínio T/biossíntese , Proteína Supressora de Tumor p14ARF/biossíntese , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Humanos , Imuno-Histoquímica , Isoenzimas/metabolismo , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proteínas com Domínio T/genética , Transfecção , Proteína Supressora de Tumor p14ARF/antagonistas & inibidores , Proteína Supressora de Tumor p14ARF/genética , Regulação para CimaRESUMO
Histone deacetylase inhibitors (HDACI) are promising antitumor agents. Although transcriptional deregulation is thought to be the main mechanism underlying their therapeutic effects, the exact mechanism and targets by which HDACIs achieve their antitumor effects remain poorly understood. It is not known whether any of the HDAC members support robust tumor growth. In this report, we show that HDAC6, a cytoplasmic-localized and cytoskeleton-associated deacetylase, is required for efficient oncogenic transformation and tumor formation. We found that HDAC6 expression is induced upon oncogenic Ras transformation. Fibroblasts deficient in HDAC6 are more resistant to both oncogenic Ras and ErbB2-dependent transformation, indicating a critical role for HDAC6 in oncogene-induced transformation. Supporting this hypothesis, inactivation of HDAC6 in several cancer cell lines reduces anchorage-independent growth and the ability to form tumors in mice. The loss of anchorage-independent growth is associated with increased anoikis and defects in AKT and extracellular signal-regulated kinase activation upon loss of adhesion. Lastly, HDAC6-null mice are more resistant to chemical carcinogen-induced skin tumors. Our results provide the first experimental evidence that a specific HDAC member is required for efficient oncogenic transformation and indicate that HDAC6 is an important component underlying the antitumor effects of HDACIs.
Assuntos
Transformação Celular Neoplásica/metabolismo , Histona Desacetilases/metabolismo , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/patologia , Processos de Crescimento Celular/fisiologia , Transformação Celular Neoplásica/patologia , Citoplasma/enzimologia , Feminino , Fibroblastos/enzimologia , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Histona Desacetilases/genética , Humanos , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genéticaRESUMO
Neural activity actively regulates muscle gene expression. This regulation is crucial for specifying muscle functionality and synaptic protein expression. How neural activity is relayed into nuclei and connected to the muscle transcriptional machinery, however, is not known. Here we identify the histone deacetylase HDAC4 as the critical linker connecting neural activity to muscle transcription. We found that HDAC4 is normally concentrated at the neuromuscular junction (NMJ), where nerve innervates muscle. Remarkably, reduced neural input by surgical denervation or neuromuscular diseases dissociates HDAC4 from the NMJ and dramatically induces its expression, leading to robust HDAC4 nuclear accumulation. We present evidence that nuclear accumulated HDAC4 is responsible for the coordinated induction of synaptic genes upon denervation. Inactivation of HDAC4 prevents denervation-induced synaptic acetyl-choline receptor (nAChR) and MUSK transcription whereas forced expression of HDAC4 mimics denervation and activates ectopic nAChR transcription throughout myofibers. We determined that HDAC4 executes activity-dependent transcription by regulating the Dach2-myogenin transcriptional cascade where inhibition of the repressor Dach2 by HDAC4 permits the induction of the transcription factor myogenin, which in turn activates synaptic gene expression. Our findings establish HDAC4 as a neural activity-regulated deacetylase and a key signaling component that relays neural activity to the muscle transcriptional machinery.
Assuntos
Regulação da Expressão Gênica , Histona Desacetilases/fisiologia , Miogenina/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Receptores Nicotínicos/metabolismo , Transcrição Gênica , Animais , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA , Histona Desacetilases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Músculo Esquelético/metabolismo , Junção Neuromuscular , Transdução de Sinais , Fatores de Tempo , Fatores de TranscriçãoRESUMO
Patients with Down syndrome have characteristic heart valve lesions resulting from endocardial cushion defects. The Down syndrome critical region 1 (DSCR1) gene, identified at the conserved trisomic 21 region in those patients, encodes a calcineurin inhibitor that inactivates nuclear factor of activated T cells (NFATc) activity. Here, we identify a regulatory sequence in the promoter region of human DSCR1 that dictates specific expression of a reporter gene in the endocardium, defined by the temporal and spatial expression of Nfatc1 during heart valve development. Activation of this evolutionally conserved DSCR1 regulatory sequence requires calcineurin and NFATc1 signaling in the endocardium. NFATc1 proteins bind to the regulatory sequence and trigger its enhancer activity. NFATc1 is sufficient to induce the expression of Dscr1 in cells that normally have undetectable or minimal NFATc1 or DSCR1. Pharmacologic inhibition of calcineurin or genetic Nfatc1 null mutation in mice abolishes the endocardial activity of this DSCR1 enhancer. Furthermore, in mice lacking endocardial NFATc1, the endogenous Dscr1 expression is specifically inhibited in the endocardium but not in the myocardium. Thus, our studies indicate that the DSCR1 gene is a direct transcriptional target of NFATc1 proteins within the endocardium during a critical window of heart valve formation.
Assuntos
Endocárdio/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Musculares/biossíntese , Fatores de Transcrição NFATC/metabolismo , Animais , Calcineurina/genética , Calcineurina/metabolismo , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Endocárdio/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Ventrículos do Coração/anormalidades , Ventrículos do Coração/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Mutantes , Proteínas Musculares/genética , Fatores de Transcrição NFATC/deficiência , Fatores de Transcrição NFATC/genética , Transdução de Sinais/genéticaRESUMO
In addition to regulating cell motility, contractility, and cytokinesis, the actin cytoskeleton plays a critical role in the regulation of transcription and gene expression. We have previously identified a novel muscle-specific actin-binding protein, STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. To further dissect the STARS/SRF pathway, we performed a yeast two-hybrid screen of a skeletal muscle cDNA library using STARS as bait, and we identified two novel members of the ABLIM protein family, ABLIM-2 and -3, as STARS-interacting proteins. ABLIM-1, which is expressed in retina, brain, and muscle tissue, has been postulated to function as a tumor suppressor. ABLIM-2 and -3 display distinct tissue-specific expression patterns with the highest expression levels in muscle and neuronal tissue. Moreover, these novel ABLIM proteins strongly bind F-actin, are localized to actin stress fibers, and synergistically enhance STARS-dependent activation of SRF. Conversely, knockdown of endogenous ABLIM expression utilizing small interfering RNA significantly blunted SRF-dependent transcription in C2C12 skeletal muscle cells. These findings suggest that the members of the novel ABLIM protein family may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription.