Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Immunity ; 45(1): 209-23, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27438772

RESUMO

CD95 ligand (CD95L) is expressed by immune cells and triggers apoptotic death. Metalloprotease-cleaved CD95L (cl-CD95L) is released into the bloodstream but does not trigger apoptotic signaling. Hence, the pathophysiological role of cl-CD95L remains unclear. We observed that skin-derived endothelial cells from systemic lupus erythematosus (SLE) patients expressed CD95L and that after cleavage, cl-CD95L promoted T helper 17 (Th17) lymphocyte transmigration across the endothelial barrier at the expense of T regulatory cells. T cell migration relied on a direct interaction between the CD95 domain called calcium-inducing domain (CID) and the Src homology 3 domain of phospholipase Cγ1. Th17 cells stimulated with cl-CD95L produced sphingosine-1-phosphate (S1P), which promoted endothelial transmigration by activating the S1P receptor 3. We generated a cell-penetrating CID peptide that prevented Th17 cell transmigration and alleviated clinical symptoms in lupus mice. Therefore, neutralizing the CD95 non-apoptotic signaling pathway could be an attractive therapeutic approach for SLE treatment.


Assuntos
Sinalização do Cálcio , Inflamação/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Fosfolipase C gama/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Receptor fas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos MRL lpr , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Fosfolipase C gama/genética , Domínios e Motivos de Interação entre Proteínas/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Transcriptoma , Migração Transendotelial e Transepitelial , Receptor fas/genética
2.
Microb Pathog ; 171: 105725, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007847

RESUMO

Among the important recent observations involving anaerobic respiration was that an electron acceptor produced as a result of an inflammatory response to Salmonella Typhimurium generates a growth advantage over the competing microbiota in the lumen. In this regard, anaerobically, salmonellae can oxidize thiosulphate (S2O32-) converting it into tetrathionate (S4O62-), the process by which it is encoded by ttr gene cluster (ttrSRttrBCA). Another important pathway under aerobic or anaerobic conditions is the 1,2-propanediol-utilization mediated by the pdu gene cluster that promotes Salmonella expansion during colitis. Therefore, we sought to compare in this study, whether Salmonella Heidelberg strains lacking the ttrA, ttrApduA, and ttrACBSR genes experience a disadvantage during cecal colonization in broiler chicks. In contrast to expectations, we found that the gene loss in S. Heidelberg potentially confers an increase in fitness in the chicken infection model. These data argue that S. Heidelberg may trigger an alternative pathway involving the use of an alternative electron acceptor, conferring a growth advantage for S. Heidelberg in chicks.


Assuntos
Galinhas , Salmonelose Animal , Animais , Galinhas/metabolismo , Propilenoglicol/metabolismo , Salmonella , Salmonella typhimurium , Tiossulfatos
3.
Infect Immun ; 86(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29760212

RESUMO

Salmonella enterica infection affects a wide range of animals and humans, and a small number of serovars cause typhoid-like infections, one characteristic of which is persistent infection in convalescents. Avian-specific S. enterica serovar Pullorum produces systemic disease in young chickens, which is followed by a carrier state in convalescent birds, leading to infection of the ovary at sexual maturity and vertical transmission. However, the immunological basis of persistent infection remains unclear. S. enterica serovar Enteritidis is taxonomically closely related but does not show this characteristic. Differences in the immune responses between S Pullorum and S Enteritidis were compared by using Salmonella-infected chicken monocyte-derived macrophages (chMDMs) and CD4+ T lymphocytes that had been cocultured with infected chMDMs or chicken splenocytes in vitro and also in 2-day-old chickens in vivo In comparison with S Enteritidis, S Pullorum-infected chMDMs showed reduced mRNA expression levels of interleukin-12α (IL-12α) and IL-18 and stimulated the proliferation of Th2 lymphocytes, with reduced expression of gamma interferon (IFN-γ) and IL-17 and increased expression levels of IL-4 and IL-13 There was little evidence of clonal anergy or immune suppression induced by S Pullorum in vitro. S Pullorum also increased the levels of expression of IL-4 and decreased the levels of IFN-γ in the spleen and cecal tonsil of infected birds. This suggests that S Pullorum is able to modulate host immunity from a dominant IFN-γ-producing Th17 response toward a Th2 response, which may promote persistent infection in chickens. S Pullorum in chickens is presented as a good model of the typhoid group to study persistent infection.


Assuntos
Imunidade Adaptativa , Portador Sadio/veterinária , Doenças das Aves Domésticas/imunologia , Salmonelose Animal/imunologia , Salmonella enterica/imunologia , Células Th17/imunologia , Células Th2/imunologia , Animais , Animais Recém-Nascidos , Portador Sadio/imunologia , Portador Sadio/microbiologia , Proliferação de Células , Células Cultivadas , Galinhas , Técnicas de Cocultura , Citocinas/biossíntese , Feminino , Masculino , Monócitos/imunologia , Monócitos/microbiologia
4.
Exp Physiol ; 103(10): 1302-1308, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30070742

RESUMO

NEW FINDINGS: What is the central question of this study? How do gastric stretch and gastric cooling stimuli affect cardiac autonomic control? What is the main finding and its importance? Gastric stretch causes an increase in cardiac sympathetic activity. Stretch combined with cold stimulation result in an elimination of the sympathetic response to stretch and an increase in cardiac parasympathetic activity, in turn resulting in a reduction in heart rate. Gastric cold stimulation causes a shift in sympathovagal balance towards parasympathetic dominance. The cold-induced bradycardia has the potential to decrease cardiac workload, which might be significant in individuals with cardiovascular pathologies. ABSTRACT: Gastric distension increases blood pressure and heart rate in young, healthy humans, but little is known about the effect of gastric stretch combined with cooling. We used a randomized crossover study to assess the cardiovascular responses to drinking 300 ml of ispaghula husk solution at either 6 or 37°C in nine healthy humans (age 24.08 ± 9.36 years) to establish the effect of gastric stretch with and without cooling. The effect of consuming peppermint oil capsules to activate cold thermoreceptors was also investigated. The ECG, respiratory movements and continuous blood pressure were recorded during a 5 min baseline period, followed by a 115 min post-drink period, during which 5 min epochs of data were recorded. Cardiac autonomic activity was assessed using time and frequency domain analyses of respiratory sinus arrhythmia to quantify parasympathetic autonomic activity, and corrected QT (QTc) interval analysis to quantify sympathetic autonomic activity. Gastric stretch only caused a significant reduction in QTc interval lasting up to 15 min, with a concomitant but non-significant increase in heart rate, indicating an increased sympathetic cardiac tone. The additional effect of gastric cold stimulation was significantly to reduce heart rate for up to 15 min, elevate indicators of cardiac parasympathetic tone and eliminate the reduction in QTc interval seen with gastric stretch only. Stimulation of gastric cold thermoreceptors with menthol also caused a significant reduction in heart rate and concomitant increase in the root mean square of successive differences. These findings indicate that gastric cold stimulation causes a shift in the sympathovagal balance of cardiac control towards a more parasympathetic dominant pattern.


Assuntos
Frequência Cardíaca/efeitos dos fármacos , Coração/efeitos dos fármacos , Mentol/administração & dosagem , Adulto , Sistema Nervoso Autônomo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Bradicardia/metabolismo , Temperatura Baixa , Estudos Cross-Over , Eletrocardiografia/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Mentha piperita , Óleos de Plantas/administração & dosagem , Psyllium/administração & dosagem , Termorreceptores/metabolismo , Adulto Jovem
5.
Nucleic Acids Res ; 40(13): 5876-89, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22434884

RESUMO

Phase variation of surface structures occurs in diverse bacterial species due to stochastic, high frequency, reversible mutations. Multiple genes of Campylobacter jejuni are subject to phase variable gene expression due to mutations in polyC/G tracts. A modal length of nine repeats was detected for polyC/G tracts within C. jejuni genomes. Switching rates for these tracts were measured using chromosomally-located reporter constructs and high rates were observed for cj1139 (G8) and cj0031 (G9). Alteration of the cj1139 tract from G8 to G11 increased mutability 10-fold and changed the mutational pattern from predominantly insertions to mainly deletions. Using a multiplex PCR, major changes were detected in 'on/off' status for some phase variable genes during passage of C. jejuni in chickens. Utilization of observed switching rates in a stochastic, theoretical model of phase variation demonstrated links between mutability and genetic diversity but could not replicate observed population diversity. We propose that modal repeat numbers have evolved in C. jejuni genomes due to molecular drivers associated with the mutational patterns of these polyC/G repeats, rather than by selection for particular switching rates, and that factors other than mutational drift are responsible for generating genetic diversity during host colonization by this bacterial pathogen.


Assuntos
Campylobacter jejuni/genética , Taxa de Mutação , Mutação , Animais , Sequência de Bases , Campylobacter jejuni/crescimento & desenvolvimento , Galinhas/microbiologia , Sequência Conservada , Genes Bacterianos , Genoma Bacteriano , Genótipo , Poli C/química , Poli G/química
6.
Braz J Microbiol ; 55(1): 1023-1028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200375

RESUMO

The mechanism of colonisation of the chicken intestine by Salmonella remains poorly understood, while the severity of infections vary enormously depending on the serovar and the age of the bird. Several metabolism and virulence genes have been identified in Salmonella Heidelberg; however, information on their roles in infection, particularly in the chicken infection model, remains scarce. In the present publication, we investigated three Salmonella Heidelberg mutants containing deletions in misL, ssa, and pta-ackA genes by using signature-tagged mutagenesis. We found that mutations in these genes of S. Heidelberg result in an increase in fitness in the chicken model. The exception was perhaps the pta-ackA mutant where colonisation was slightly reduced (2, 7, 14, and 21 days post-infection) although some birds were still excreting at the end of the experiment. Our results suggest that for intestinal colonisation of the chicken caecum, substrate-level phosphorylation is likely to be more important than the MisL outer membrane protein or even the secretion system apparatus. These findings validate previous work that demonstrated the contribution of ackA and pta mutants to virulence in chickens, suggesting that the anaerobic metabolism genes such as pta-ackA could be a promising mitigation strategy to reduce S. Heidelberg virulence.


Assuntos
Galinhas , Salmonelose Animal , Animais , Fosforilação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Anaerobiose , Virulência , Salmonella , Salmonelose Animal/microbiologia
7.
Pathogens ; 9(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076485

RESUMO

Salmonella enterica serovar Gallinarum (S. Gallinarum) is the cause of typhoid in chickens but the immune factors that may facilitate the development of typhoid have not been fully elucidated. We show that, in contrast to non-typhoid S. Enteritidis infection, S. Gallinarum significantly reduced nitrite ion production and expression of mRNA for heterophil granulocyte chemoattractants CXCLi2 and IL-6 in chicken monocyte-derived macrophages (chMDMs) (p < 0.05) at 6 h post-infection (pi). S. Gallinarum also reduced IFN-γ and IL-17 expression by CD4+ lymphocytes cultured with infected chMDMs for 5 days but did not induce a Th2 phenotype or anergy. In vivo, S. Gallinarum also induced significantly lower expression of CXCLi1, CXCLi2, IL-1ß, IL-6 and iNOS mRNA in the caecal tonsil by day 2 pi (p < 0.05-0.01) and consistently lower levels of IFN-γ, IL-18, IL-12, and IL-17. In the spleen, S. Gallinarum induced significantly lower levels of iNOS and IFN-γ (p < 0.01 and 0.05 respectively) and consistently lower levels of IL-18 and IL-12 but significantly greater (p < 0.01) expression of anti-inflammatory IL-10 at day 4 and 5 pi when compared to S. Enteritidis. This immune phenotype was associated with transit from the intestinal tissues to the liver by S. Gallinarum, not observed following S. Enteritidis infection. In conclusion, we report an immune mechanism that may facilitate typhoid disease in S. Gallinarum-infected chickens. However, down-regulation of inflammatory mediators, upregulation of IL-10, and associated liver colonisation are also characteristic of human typhoid, suggesting that this may also be a useful model of typhoid in humans.

8.
J Mol Graph Model ; 101: 107723, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32927271

RESUMO

One promising strategy to combat antimicrobial resistance is to use bacteriophages that attach to the sex pili produced by transmissible antimicrobial resistance (AMR) plasmids, infect AMR bacteria and select for loss of the AMR plasmids, prolonging the life of existing antimicrobials. The maturation protein of the bacteriophage MS2 attaches to the pili produced by Incompatibility group F plasmid-containing bacteria. This interaction initiates delivery of the viral genetic material into the bacteria. Using protein-protein docking we constructed a model of the F pilus comprising a trimer of subunits binding to the maturation protein. Interactions between the maturation protein and the F pilus were investigated using molecular dynamics simulations. In silico alanine scanning and in silico single-point mutations were explored, with the longer term aim of increasing the affinity of the maturation protein to other Incompatibility group pili, without reducing the strength of binding to F pilin. We report our computational findings on which residues are required for the maturation protein and F pilin to interact, those which had no effect on the interaction and the mutations which led to a stronger interaction.


Assuntos
Proteínas de Escherichia coli , Pili Sexual , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fator F/genética , Levivirus/genética
9.
Nat Commun ; 11(1): 851, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051408

RESUMO

Lipopolysaccharide (LPS) O-antigen (O-Ag) is known to limit antibody binding to surface antigens, although the relationship between antibody, O-Ag and other outer-membrane antigens is poorly understood. Here we report, immunization with the trimeric porin OmpD from Salmonella Typhimurium (STmOmpD) protects against infection. Atomistic molecular dynamics simulations indicate this is because OmpD trimers generate footprints within the O-Ag layer sufficiently sized for a single IgG Fab to access. While STmOmpD differs from its orthologue in S. Enteritidis (SEn) by a single amino-acid residue, immunization with STmOmpD confers minimal protection to SEn. This is due to the OmpD-O-Ag interplay restricting IgG binding, with the pairing of OmpD with its native O-Ag being essential for optimal protection after immunization. Thus, both the chemical and physical structure of O-Ag are key for the presentation of specific epitopes within proteinaceous surface-antigens. This enhances combinatorial antigenic diversity in Gram-negative bacteria, while reducing associated fitness costs.


Assuntos
Anticorpos Antibacterianos/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Imunização , Antígenos O/imunologia , Salmonella typhimurium/imunologia , Animais , Anticorpos Antibacterianos/sangue , Formação de Anticorpos , Especificidade de Anticorpos , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteção Cruzada , Modelos Animais de Doenças , Epitopos/química , Epitopos/imunologia , Imunoglobulina G/sangue , Camundongos , Modelos Moleculares , Antígenos O/química , Antígenos O/genética , Porinas/química , Porinas/genética , Porinas/imunologia , Conformação Proteica , Salmonelose Animal/imunologia , Salmonelose Animal/prevenção & controle , Análise de Sequência de Proteína
10.
Braz J Microbiol ; 40(3): 495-504, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24031393

RESUMO

Salmonella enterica serovar Gallinarum (SG) is a fowl typhoid agent in chickens and is a severe disease with worldwide economic impact as its mortality may reach up to 80%. It is one of a small group of serovars that typically produces typhoid-like infections in a narrow range of host species and which therefore represents a good model for human typhoid. The survival mechanisms are not considered to be virulent mechanisms but are essential for the life of the bacterium. Mutants of Salmonella Gallinarum containing defective genes, related to cobalamin biosynthesis and which Salmonella spp. has to be produced to survive when it is in an anaerobic environment, were produced in this study. Salmonella Gallinarum is an intracellular parasite. Therefore, this study could provide information about whether vitamin B12 biosynthesis might be essential to its survival in the host. The results showed that the singular deletion in cbiA or cobS genes did not interfere in the life of Salmonella Gallinarum in the host, perhaps because single deletion is not enough to impede vitamin B12 biosynthesis. It was noticed that diluted SG mutants with single deletion produced higher mortality than the wild strain of SG. When double mutation was carried out, the Salmonella Gallinarum mutant was unable to provoke mortality in susceptible chickens. This work showed that B12 biosynthesis is a very important step in the metabolism of Salmonella Gallinarum during the infection of the chickens. Further research on bacterium physiology should be carried out to elucidate the events described in this research and to assess the mutant as a vaccine strain.

11.
BMC Microbiol ; 8: 228, 2008 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19091138

RESUMO

BACKGROUND: Salmonella enterica is a facultative intracellular pathogen of worldwide importance. Over 2,500 serovars exist and infections in humans and animals may produce a spectrum of symptoms from enteritis to typhoid depending on serovar- and host-specific factors. S. Enteritidis is the most prevalent non-typhoidal serovar isolated from humans with acute diarrhoeal illness in many countries. Human infections are frequently associated with direct or indirect contact with contaminated poultry meat or eggs owing to the ability of the organism to persist in the avian intestinal and reproductive tract. The molecular mechanisms underlying colonisation of poultry by S. Enteritidis are ill-defined. Targeted and genome-wide mutagenesis of S. Typhimurium has revealed conserved and host-specific roles for selected fimbriae in intestinal colonisation of different hosts. Here we report the first systematic analysis of each chromosomally-encoded major fimbrial subunit of S. Enteritidis in intestinal colonisation of chickens. RESULTS: The repertoire, organisation and sequence of the fimbrial operons within members of S. enterica were compared. No single fimbrial locus could be correlated with the differential virulence and host range of serovars by comparison of available genome sequences. Fimbrial operons were highly conserved among serovars in respect of gene number, order and sequence, with the exception of safA. Thirteen predicted major fimbrial subunit genes were separately inactivated by lambda Red recombinase-mediated linear recombination followed by P22/int transduction. The magnitude and duration of intestinal colonisation by mutant and parent strains was measured after oral inoculation of out-bred chickens. Whilst the majority of S. Enteritidis major fimbrial subunit genes played no significant role in colonisation of the avian intestines, mutations affecting pegA in two different S. Enteritidis strains produced statistically significant attenuation. Plasmid-mediated trans-complementation partially restored the colonisation phenotype. CONCLUSION: We describe the fimbrial gene repertoire of the predominant non-typhoidal S. enterica serovar affecting humans and the role played by each predicted major fimbrial subunit in intestinal colonisation of the primary reservoir. Our data support a role for PegA in the colonisation of poultry by S. Enteritidis and aid the design of improved vaccines.


Assuntos
Galinhas/microbiologia , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Intestinos/microbiologia , Salmonella enteritidis/crescimento & desenvolvimento , Animais , Cromossomos Bacterianos/genética , Proteínas de Fímbrias/química , Humanos , Óperon , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enteritidis/genética
12.
FEMS Immunol Med Microbiol ; 54(1): 114-21, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18647351

RESUMO

Campylobacter jejuni is a major cause of human inflammatory enteritis, but colonizes the gastrointestinal tract of poultry to a high level in a commensal manner. In vitro, C. jejuni induces the production of cytokines from both human and avian-model epithelial cell and macrophage infections. This suggests that, in vivo, Campylobacter could induce proinflammatory signals in both hosts. We investigated whether a proinflammatory cytokine response can be measured in both day-of-hatch and 2-week-old Light Sussex chickens during infection with C. jejuni. A significant induction of proinflammatory chemokine transcript was observed in birds of both ages, compared with levels in mock-infected controls. This correlated with an influx of heterophils but was not associated with any pathology. These results suggest that in poultry there may be a controlled inflammatory process during colonization.


Assuntos
Campylobacter jejuni/crescimento & desenvolvimento , Ceco/microbiologia , Íleo/imunologia , Mucosa Intestinal/imunologia , Animais , Infecções por Campylobacter/imunologia , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Campylobacter jejuni/imunologia , Campylobacter jejuni/isolamento & purificação , Ceco/imunologia , Galinhas , Contagem de Colônia Microbiana , Citocinas/metabolismo , Íleo/microbiologia , Mucosa Intestinal/microbiologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Organismos Livres de Patógenos Específicos
13.
Vet Rec ; 182(5): 141, 2018 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-29217765

RESUMO

The prevalence of Salmonella in chelonians is not known in the UK and it is not clear whether such Salmonella strains would be pathogenic for human beings. Some strains, such as members of the Arizonae subgroup, may be unable to cause anything more than very mild disease. To determine the carriage of Salmonella in pet tortoises, cloacal swabs were taken for culture. Salmonella enterica Group D was isolated from 5 of the 89 samples. All five were from the same household of seven tortoises. Salmonella isolates were shown by PCR to carry the invA and spiC genes associated with pathogenicity islands 1 and 2. Each isolate carried both genes indicating they had the genetic basis for disease and enterocyte invasion in human beings. The study indicates a low rate of asymptomatic carriage among the general population of pet tortoises. However, it does suggest that those Salmonella strains colonising the tortoise can carry Salmonellapathogenicity island (SPI)-1 and SPI-2 conferring the potential to cause disease in human beings and other animals.


Assuntos
Animais de Estimação/microbiologia , Salmonella enterica/isolamento & purificação , Tartarugas/microbiologia , Zoonoses , Animais , Humanos , Risco , Salmonella enterica/genética , Reino Unido
14.
Res Microbiol ; 158(1): 79-85, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17227702

RESUMO

Polyphosphate is involved in resistance to stress in a number of bacterial species; however, its role in the virulence of Salmonella enterica serovars which differ in their host range has not been described. We examined the role of polyphosphate kinase in infection, growth and survival of S. Typhimurium (broad-host range) and S. Gallinarum (avian-adapted). We also used ppk mutants to assess the downstream effects on intracellular ATP levels. ppk mutants had significantly (P<0.05) elevated ATP in stationary phase compared to the wild-type and, depending on the serovar, were defective in growth, survival and virulence. The virulence of S. Typhimurium ppk::SpcStr was significantly (P<0.05) attenuated following oral infection of both Rhode Island Red chickens and BALB/c mice. In contrast, inactivation of the ppk gene of S. Gallinarum did not affect growth or virulence. The differential contribution of polyphosphate to the virulence of S. Typhimurium and S. Gallinarum may reflect aspects of the pathogenesis and host range of these serovars. The ppk mutant of both serovars survived significantly less well (P<0.05) in a saline starvation-survival model, relative to the respective parent. The effect of ppk mutation on survival was formally described by fitting the data to the Weibull model and by estimation of k(max). Measurement of rpoS promoter activity using a lacZ transcriptional fusion demonstrated repression of rpoS in a ppk background, confirming a role for polyphosphate in RpoS induction. Together the data indicate the crucial importance of maintaining stable intracellular ATP during infection and nutritional stress. We suggest that polyphosphate plays a central role in homeostasis during growth and stress.


Assuntos
Trifosfato de Adenosina/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/fisiologia , Infecções por Salmonella/microbiologia , Salmonella enterica/fisiologia , Salmonella enterica/patogenicidade , Animais , Galinhas , Genes Bacterianos , Camundongos , Camundongos Endogâmicos BALB C , Mutação Puntual , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/fisiologia , Especificidade da Espécie , Virulência
15.
FEMS Microbiol Rev ; 29(5): 1021-40, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16023758

RESUMO

The enteric pathogen Salmonella enterica is exposed to a number of stressful environments during its life cycle within and outside its various hosts. During intestinal colonisation Salmonella is successively exposed to acid pH in the stomach, to the detergent-like activity of bile, to decreasing oxygen supply, to the presence of multiple metabolites produced by the normal gut microflora and finally it is exposed to cationic antimicrobial peptides present on the surface of epithelial cells. There are four major regulators controlling relevant stress responses in Salmonella, namely RpoS, PhoPQ, Fur and OmpR/EnvZ. Except for Fur, inactivation of genes encoding the other stress regulators results in attenuated virulence and such mutants can therefore be considered as vaccine candidates. In contrast, a decrease in oxygen supply monitored by Fnr and ArcAB, or oxidative stress controlled by OxyR and SoxRS is not regarded as a stress associated with host colonisation since inactivation of either of these systems does not result in reductions in colonisation. The role of quorum-sensing through luxS and sdiA is also considered as a regulator of virulence and colonisation.


Assuntos
Regulação Bacteriana da Expressão Gênica , Resposta ao Choque Térmico , Intestinos/microbiologia , Infecções por Salmonella/microbiologia , Salmonella enteritidis/fisiologia , Salmonella typhimurium/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Salmonella enteritidis/crescimento & desenvolvimento , Salmonella enteritidis/patogenicidade , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Virulência
16.
Res Vet Sci ; 114: 266-272, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28535467

RESUMO

Production disease in pigs is caused by a variety of different pathogens, mainly enteric and respiratory and can result in significant economic loss. Other factors such as stress, poor husbandry and nutrition can also contribute to an animal's susceptibility to disease. Molecular biomarkers of production disease could be of immense value by improving diagnosis and risk analysis to determine best practice with an impact on increased economic output and animal welfare. In addition to the use of multiplex PCR or microarrays to detect individual or mixed pathogens during infection, these technologies can also be used to monitor the host response to infection via gene expression. The patterns of gene expression associated with cellular damage or initiation of the early immune response may indicate the type of pathology and, by extension the types of pathogen involved. Molecular methods can therefore be used to monitor both the presence of a pathogen and the host response to it during production disease. The field of biomarker discovery and implementation is expanding as technologies such as microarrays and next generation sequencing become more common. Whilst a large number of studies have been carried out in human medicine, further work is needed to identify molecular biomarkers in veterinary medicine and in particular those associated with production disease in the pig industry. The pig transcriptome is highly complex and still not fully understood. Further gene expression studies are needed to identify molecular biomarkers which may have predictive value in identifying the environmental, nutritional and other risk factors which are associated with production diseases in pigs.


Assuntos
Criação de Animais Domésticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Doenças dos Suínos/diagnóstico , Criação de Animais Domésticos/instrumentação , Animais , Biomarcadores , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sus scrofa , Suínos
17.
Genome Announc ; 5(47)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167238

RESUMO

The complete genome sequences of seven closely related Vibrio cholerae phages isolated from environmental sites in southeastern China are reported here. Phages QH, CJY, H1, H2, H3, J2, and J3 are members of the Podoviridae family and are highly similar to the previously sequenced Vibrio phages VP2, VP5, and phiVC8.

18.
Genome Announc ; 5(46)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146843

RESUMO

The complete genomes of two Vibrio cholerae bacteriophages of potential interest for cholera bacteriophage (phage) therapy were sequenced and annotated. The genome size of phage 24 is 44,395 bp encoding 71 putative proteins, and that of phage X29 is 41,569 bp encoding 68 putative proteins.

19.
PeerJ ; 4: e2216, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27602258

RESUMO

A homologue to a widely used genetic marker, pla, for Yersinia pestis has been identified in tissue samples of two species of rat (Rattus rattus and Rattus norvegicus) and of mice (Mus musculus and Apodemus sylvaticus) using a microarray based platform to screen for zoonotic pathogens of interest. Samples were from urban locations in the UK (Liverpool) and Canada (Vancouver). The results indicate the presence of an unknown bacterium that shares a homologue for the pla gene of Yersinia pestis, so caution should be taken when using this gene as a diagnostic marker.

20.
J Interferon Cytokine Res ; 25(1): 31-42, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15684620

RESUMO

Vasoactive intestinal peptide (VIP)is a novel Th2 cytokine that has been shown previously to rescue rats and mice from the lethal effect of bacterial lipopolysaccharide (LPS). We report that VIP inhibited production of the proinflammatory cytokines, tumor necrosis factor-alpha(TNF-alpha)and interleukin-1beta (IL-1beta), at the mRNA level and that the inhibitory effect of VIP was maintained when macrophages were cocultured with an immunostimulatory concentration of interferon-gamma (IFN-gamma)(100 U/ml). The concentration of VIP that had optimal inhibitory effect was (1010) M. Furthermore, VIP prevented macrophage killing of a phoP mutant of Salmonella enterica serovar typhimurium, which is usually attenuated for virulence as a result of its inability to survive inside macrophages. However, although the effect of VIP on inducible nitric oxide synthase (iNOS) was less clear, N-monoethyl arginine (NEMA)(an iNOS inhibitor)did not rescue S. typhimurium from IFN- gamma-induced death, in accordance with previous reports that suggest that iNOS is not an important Salmonella killing pathway in macrophages within the first 24 h. VIP is a potent inhibitor of inflammatory pathways that lead to significant pathologic conditions. However, it increases survival of the normally avirulent phoP mutant and is able to inhibit IFN-gamma-stimulated killing of wild-type S. typhimurium in murine macrophages. Thus, VIP inhibits the proinflammatory type 1 response, thus favoring Salmonella survival.


Assuntos
Citocinas/metabolismo , Interferon gama/metabolismo , Macrófagos/microbiologia , Salmonella typhimurium/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Macrófagos/metabolismo , Camundongos , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa