Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(42): e2206563119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36223394

RESUMO

Intercellular communication is a hallmark of living systems. As such, engineering artificial cells that possess this behavior has been at the heart of activities in bottom-up synthetic biology. Communication between artificial and living cells has potential to confer novel capabilities to living organisms that could be exploited in biomedicine and biotechnology. However, most current approaches rely on the exchange of chemical signals that cannot be externally controlled. Here, we report two types of remote-controlled vesicle-based artificial organelles that translate physical inputs into chemical messages that lead to bacterial activation. Upon light or temperature stimulation, artificial cell membranes are activated, releasing signaling molecules that induce protein expression in Escherichia coli. This distributed approach differs from established methods for engineering stimuli-responsive bacteria. Here, artificial cells (as opposed to bacterial cells themselves) are the design unit. Having stimuli-responsive elements compartmentalized in artificial cells has potential applications in therapeutics, tissue engineering, and bioremediation. It will underpin the design of hybrid living/nonliving systems where temporal control over population interactions can be exerted.


Assuntos
Células Artificiais , Fenômenos Biológicos , Células Artificiais/química , Bactérias , Organelas/metabolismo , Biologia Sintética
2.
J Am Chem Soc ; 146(19): 13176-13182, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691505

RESUMO

Synthetic cells can be constructed from diverse molecular components, without the design constraints associated with modifying 'living' biological systems. This can be exploited to generate cells with abiotic components, creating functionalities absent in biology. One example is magnetic responsiveness, the activation and modulation of encapsulated biochemical processes using a magnetic field, which is absent from existing synthetic cell designs. This is a critical oversight, as magnetic fields are uniquely bio-orthogonal, noninvasive, and highly penetrative. Here, we address this by producing artificial magneto-responsive organelles by coupling thermoresponsive membranes with hyperthermic Fe3O4 nanoparticles and embedding them in synthetic cells. Combining these systems enables synthetic cell microreactors to be built using a nested vesicle architecture, which can respond to alternating magnetic fields through in situ enzymatic catalysis. We also demonstrate the modulation of biochemical reactions by using different magnetic field strengths and the potential to tune the system using different lipid compositions. This platform could unlock a wide range of applications for synthetic cells as programmable micromachines in biomedicine and biotechnology.


Assuntos
Células Artificiais , Campos Magnéticos , Células Artificiais/química , Células Artificiais/metabolismo , Nanopartículas de Magnetita/química
3.
Proc Natl Acad Sci U S A ; 117(33): 19705-19712, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747579

RESUMO

Photosystem II (PS II) captures solar energy and directs charge separation (CS) across the thylakoid membrane during photosynthesis. The highly oxidizing, charge-separated state generated within its reaction center (RC) drives water oxidation. Spectroscopic studies on PS II RCs are difficult to interpret due to large spectral congestion, necessitating modeling to elucidate key spectral features. Herein, we present results from time-dependent density functional theory (TDDFT) calculations on the largest PS II RC model reported to date. This model explicitly includes six RC chromophores and both the chlorin phytol chains and the amino acid residues <6 Å from the pigments' porphyrin ring centers. Comparing our wild-type model results with calculations on mutant D1-His-198-Ala and D2-His-197-Ala RCs, our simulated absorption-difference spectra reproduce experimentally observed shifts in known chlorophyll absorption bands, demonstrating the predictive capabilities of this model. We find that inclusion of both nearby residues and phytol chains is necessary to reproduce this behavior. Our calculations provide a unique opportunity to observe the molecular orbitals that contribute to the excited states that are precursors to CS. Strikingly, we observe two high oscillator strength, low-lying states, in which molecular orbitals are delocalized over ChlD1 and PheD1 as well as one weaker oscillator strength state with molecular orbitals delocalized over the P chlorophylls. Both these configurations are a match for previously identified exciton-charge transfer states (ChlD1+PheD1-)* and (PD2+PD1-)*. Our results demonstrate the power of TDDFT as a tool, for studies of natural photosynthesis, or indeed future studies of artificial photosynthetic complexes.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/metabolismo , Complexo de Proteína do Fotossistema II/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clorofila/química , Clorofila/metabolismo , Cianobactérias/química , Cianobactérias/genética , Cinética , Modelos Moleculares , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Thermosynechococcus
4.
Proc Natl Acad Sci U S A ; 116(34): 16711-16716, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31371493

RESUMO

To date, reconstitution of one of the fundamental methods of cell communication, the signaling pathway, has been unaddressed in the bottom-up construction of artificial cells (ACs). Such developments are needed to increase the functionality and biomimicry of ACs, accelerating their translation and application in biotechnology. Here, we report the construction of a de novo synthetic signaling pathway in microscale nested vesicles. Vesicle-cell models respond to external calcium signals through activation of an intracellular interaction between phospholipase A2 and a mechanosensitive channel present in the internal membranes, triggering content mixing between compartments and controlling cell fluorescence. Emulsion-based approaches to AC construction are therefore shown to be ideal for the quick design and testing of new signaling networks and can readily include synthetic molecules difficult to introduce to biological cells. This work represents a foundation for the engineering of multicompartment-spanning designer pathways that can be utilized to control downstream events inside an AC, leading to the assembly of micromachines capable of sensing and responding to changes in their local environment.


Assuntos
Células Artificiais , Compartimento Celular , Mecanotransdução Celular , Cálcio/metabolismo , Comunicação Celular/efeitos dos fármacos , Compartimento Celular/efeitos dos fármacos , Quelantes/farmacologia , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Fosfolipases A2/metabolismo
5.
J Am Chem Soc ; 134(13): 5746-9, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22428921

RESUMO

Mechanical properties of biological membranes are known to regulate membrane protein function. Despite this, current models of protein communication typically feature only direct protein-protein or protein-small molecule interactions. Here we show for the first time that, by harnessing nanoscale mechanical energy within biological membranes, it is possible to promote controlled communication between proteins. By coupling lipid-protein modules and matching their response to the mechanical properties of the membrane, we have shown that the action of phospholipase A(2) on acyl-based phospholipids triggers the opening of the mechanosensitive channel, MscL, by generating membrane asymmetry. Our findings confirm that the global physical properties of biological membranes can act as information pathways between proteins, a novel mechanism of membrane-mediated protein-protein communication that has important implications for (i) the underlying structure of signaling pathways, (ii) our understanding of in vivo communication networks, and (iii) the generation of building blocks for artificial protein networks.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Engenharia Genética/métodos , Canais Iônicos/metabolismo , Fosfolipases A2 Secretórias/metabolismo , Fenômenos Biomecânicos , Proteínas de Escherichia coli/genética , Canais Iônicos/genética , Bicamadas Lipídicas/metabolismo , Fosfolipídeos/metabolismo , Ligação Proteica
6.
Lab Chip ; 22(5): 972-985, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35107110

RESUMO

Simple diffusion of molecular entities through a phospholipid bilayer, is a phenomenon of great importance to the pharmaceutical and agricultural industries. Current model lipid systems to probe this typically only employ fluorescence as a readout, thus limiting the range of assessable chemical matter that can be studied. We report a new technology platform, the UV-DIB, which facilitates label free measurement of small molecule translocation rates. This is based upon the coupling of droplet interface bilayer technology with implemented fiber optics to facilitate analysis via ultraviolet spectroscopy, in custom designed PMMA wells. To improve on current DIB technology, the platform was designed to be reusable, with a high sampling rate and a limit of UV detection in the low µM regime. We demonstrate the use of our system to quantify passive diffusion in a reproducible and rapid manner where the system was validated by investigating multiple permeants of varying physicochemical properties across a range of lipid interfaces, each demonstrating differing kinetics. Our system permits the interrogation of structural dependence on the permeation rate of a given compound. We present this ability from two structural perspectives, that of the membrane, and the permeant. We observed a reduction in permeability between pure DOPC and DPhPC interfaces, concurring with literature and demonstrating our ability to study the effects of lipid composition on permeability. In relation to the effects of permeant structure, our device facilitated the rank ordering of various compounds from the xanthine class of compounds, where the structure of each permeant differed by a single group alteration. We found that DIBs were stable up to 5% DMSO, a molecule often used to aid solubilisation of pharmaceutical and agrochemical compounds. The ability of our device to rank-order compounds with such minor structural differences provides a level of precision that is rarely seen in current, industrially applied technologies.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Difusão , Cinética , Bicamadas Lipídicas/química , Permeabilidade , Fosfolipídeos/química
7.
Commun Chem ; 3: 77, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34113722

RESUMO

Droplet interface bilayers (DIBs) are model membranes formed between lipid monolayer-encased water droplets in oil. Compared to conventional methods, one of the most unique properties of DIBs is that they can be connected together to generate multi-layered 'tissue-like' networks, however introducing communication pathways between these compartments typically relies on water-soluble pores that are unable to gate. Here, we show that network connectivity can instead be achieved using a water-insoluble membrane protein by successfully reconstituting a chemically activatable mutant of the mechanosensitive channel MscL into a network of DIBs. Moreover, we also show how the small molecule activator can diffuse through an open channel and across the neighbouring droplet to activate MscL present in an adjacent bilayer. This demonstration of membrane protein mediated bilayer communication could prove key toward developing the next generation of responsive bilayer networks capable of defining information flow inside a minimal tissue.

8.
Anal Biochem ; 374(2): 358-65, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18062912

RESUMO

We employ a particular form of two-dimensional infrared four-wave mixing (2DIR FWM) as a vibrational spectroscopic tool to quantify the amino acid content of a number of peptides. Vibrational features corresponding to ring modes of the aromatic groups of phenylalanine (Phe) and tyrosine (Tyr), as well as a methylene mode that is used as an internal reference, are identified. We show that the ratios of the integrated intensities, and the amplitudes, of the aromatic peaks of Phe and Tyr relative to the methylene integrated intensity, and amplitude, are proportional to the actual ratio of Phe and Tyr to CH(2) in the samples within a precision of +/-12.5%. This precision is shown to be sufficient to use this form of 2DIR spectroscopy as a possible proteins fingerprinting tool.


Assuntos
Óptica e Fotônica , Mapeamento de Peptídeos/métodos , Espectrofotometria Infravermelho/métodos , Aminoácidos/análise , Sensibilidade e Especificidade
9.
J R Soc Interface ; 15(148)2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464059

RESUMO

For the past decade, droplet interface bilayers (DIBs) have had an increased prevalence in biomolecular and biophysical literature. However, much of the underlying physics of these platforms is poorly characterized. To further our understanding of these structures, lipid membrane tension on DIB membranes is measured by analysing the equilibrium shape of asymmetric DIBs. To this end, the morphology of DIBs is explored for the first time using confocal laser scanning fluorescence microscopy. The experimental results confirm that, in accordance with theory, the bilayer interface of a volume-asymmetric DIB is curved towards the smaller droplet and a lipid-asymmetric DIB is curved towards the droplet with the higher monolayer surface tension. Moreover, the DIB shape can be exploited to measure complex bilayer surface energies. In this study, the bilayer surface energy of DIBs composed of lipid mixtures of phosphatidylgylcerol (PG) and phosphatidylcholine are shown to increase linearly with PG concentrations up to 25%. The assumption that DIB bilayer area can be geometrically approximated as a spherical cap base is also tested, and it is discovered that the bilayer curvature is negligible for most practical symmetric or asymmetric DIB systems with respect to bilayer area.


Assuntos
Bicamadas Lipídicas/química , Modelos Químicos , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Tensão Superficial
10.
Sci Rep ; 7(1): 17551, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29242597

RESUMO

A new rheological droplet interface bilayer (rheo-DIB) device is presented as a tool to apply shear stress on biological lipid membranes. Despite their exciting potential for affecting high-throughput membrane translocation studies, permeability assays conducted using DIBs have neglected the effect of the unstirred water layer (UWL). However as demonstrated in this study, neglecting this phenomenon can cause significant underestimates in membrane permeability measurements which in turn limits their ability to predict key processes such as drug translocation rates across lipid membranes. With the use of the rheo-DIB chip, the effective bilayer permeability can be modulated by applying shear stress to the droplet interfaces, inducing flow parallel to the DIB membranes. By analysing the relation between the effective membrane permeability and the applied stress, both the intrinsic membrane permeability and UWL thickness can be determined for the first time using this model membrane approach, thereby unlocking the potential of DIBs for undertaking diffusion assays. The results are also validated with numerical simulations.

11.
Lab Chip ; 16(24): 4653-4657, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27831583

RESUMO

We present a simple method for the multiplexed formation of droplet interface bilayers (DIBs) using a mechanically operated linear acrylic chamber array. To demonstrate the functionality of the chip design, a lipid membrane permeability assay is performed. We show that multiple, symmetric DIBs can be created and separated using this robust low-cost approach.

12.
Lab Chip ; 16(23): 4621-4627, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27797387

RESUMO

In this study, we introduce an optofluidic method for the rapid construction of large-area cell-sized droplet assemblies with user-defined, re-writable, two-dimensional patterns of functional droplets. Light responsive water-in-oil droplets capable of releasing fluorescent dye molecules upon exposure were generated and self-assembled into arrays inside a microfluidic device. This biological architecture was exploited by the scanning laser of a confocal microscope to 'write' user defined patterns of differentiated (fluorescent) droplets in a network of originally undifferentiated (non-fluorescent) droplets. As a result, long lasting images were produced on a droplet fabric with droplets acting as pixels of a biological monitor, which can be erased and re-written on-demand. Regio-specific light-induced droplet differentiation within a large population of droplets provides a new paradigm for the rapid construction of bio-synthetic systems with potential as tissue mimics and biological display materials.


Assuntos
Dispositivos Lab-On-A-Chip , Lasers , Fenômenos Ópticos
13.
Plant Methods ; 10: 17, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24987448

RESUMO

BACKGROUND: Rubisco (Ribulose-1,5-bisphosphate carboxylase/oxygenase) is a Calvin Cycle enzyme involved in CO2 assimilation. It is thought to be a major cause of photosynthetic inefficiency, suffering from both a slow catalytic rate and lack of specificity due to a competing reaction with oxygen. Revealing and understanding the engineering rules that dictate Rubisco's activity could have a significant impact on photosynthetic efficiency and crop yield. RESULTS: This paper describes the purification and characterisation of a number of hydrophobically distinct populations of Rubisco from both Spinacia oleracea and Brassica oleracea extracts. The populations were obtained using a novel and rapid purification protocol that employs hydrophobic interaction chromatography (HIC) as a form I Rubisco enrichment procedure, resulting in distinct Rubisco populations of expected enzymatic activities, high purities and integrity. CONCLUSIONS: We demonstrate here that HIC can be employed to isolate form I Rubisco with purities and activities comparable to those obtained via ion exchange chromatography (IEC). Interestingly, and in contrast to other published purification methods, HIC resulted in the isolation of a number of hydrophobically distinct Rubisco populations. Our findings reveal a so far unaccounted diversity in the hydrophobic properties within form 1 Rubisco. By employing HIC to isolate and characterise Spinacia oleracea and Brassica oleracea, we show that the presence of these distinct Rubisco populations is not species specific, and we report for the first time the kinetic properties of Rubisco from Brassica oleracea extracts. These observations may aid future studies concerning Rubisco's structural and functional properties.

14.
J R Soc Interface ; 10(87): 20130496, 2013 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-23925982

RESUMO

De novo synthetic biological design has the potential to significantly impact upon applications such as energy generation and nanofabrication. Current designs for constructing organisms from component parts are typically limited in scope, as they utilize a cut-and-paste ideology to create simple stepwise engineered protein-signalling pathways. We propose the addition of a new design element that segregates components into lipid-bound 'proto-organelles', which are interfaced with response elements and housed within a synthetic protocell. This design is inspired by living cells, which utilize multiple types of signalling molecules to facilitate communication between isolated compartments. This paper presents our design and validation of the components required for a simple multi-compartment protocell machine, for coupling a light transducer to a gene expression system. This represents a general design concept for the compartmentalization of different types of artificial cellular machinery and the utilization of non-protein signal molecules for signal transduction.


Assuntos
Células Artificiais/citologia , Compartimento Celular , Transdução de Sinais , Células Artificiais/metabolismo , Células Artificiais/ultraestrutura , Expressão Gênica , Engenharia Genética , Engenharia de Proteínas , Proteínas/metabolismo
15.
J Chem Phys ; 127(11): 114513, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17887863

RESUMO

We show that it is possible to both directly measure and directly calculate Fermi resonance couplings in benzene. The measurement method used was a particular form of two-dimensional infrared spectroscopy (2D-IR) known as doubly vibrationally enhanced four wave mixing. By using different pulse orderings, vibrational cross peaks could be measured either purely at the frequencies of the base vibrational states or split by the coupling energy. This capability is a feature currently unique to this particular form of 2D-IR and can be helpful in the decongestion of complex spectra. Five cross peaks of the ring breathing mode nu13 with a range of combination bands were observed spanning a region of 1500-4550 cm(-1). The coupling energy was measured for two dominant states of the nu13+nu16 Fermi resonance tetrad. Dephasing rates were measured in the time domain for nu13 and the two (nu13+nu16) Fermi resonance states. The electronic and mechanical vibrational anharmonic coefficients were calculated to second and third orders, respectively, giving information on relative intensities of the cross peaks and enabling the Fermi resonance states of the combination band nu13+nu16 at 3050-3100 cm(-1) to be calculated. The excellent agreement between calculated and measured spectral intensities and line shapes suggests that assignment of spectral features from ab initio calculations is both viable and practicable for this form of spectroscopy.


Assuntos
Físico-Química/métodos , Espectrofotometria Infravermelho/métodos , Algoritmos , Benzeno/química , Modelos Estatísticos , Modelos Teóricos , Conformação Molecular , Distribuição Normal , Fótons , Espectrofotometria/métodos , Análise Espectral Raman , Fatores de Tempo
16.
Proc Natl Acad Sci U S A ; 100(3): 946-51, 2003 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-12538865

RESUMO

Light-induced charge separation is the primary photochemical event of photosynthesis. Efficient charge separation in photosynthetic reaction centers requires the balancing of electron and excitation energy transfer processes, and in Photosystem II (PSII), these processes are particularly closely entangled. Calculations that treat the cofactors of the PSII reaction center as a supermolecular complex allow energy and electron transfer reactions to be described in a unified way. This calculational approach is shown to be in good agreement with experimentally observed energy and electron transfer dynamics. This supermolecular view also correctly predicts the effect of changing the redox potentials of cofactors by site-directed mutagenesis, thus providing a unified and quantitative structure-function relationship for the PSII reaction center.


Assuntos
Fenômenos Fisiológicos Bacterianos , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética , Bactérias/metabolismo , Elétrons , Cinética , Modelos Biológicos , Modelos Estatísticos , Método de Monte Carlo , Complexo de Proteína do Fotossistema II , Fenômenos Fisiológicos Vegetais , Espectrofotometria , Relação Estrutura-Atividade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa