RESUMO
NMR is a noninvasive, molecular-level spectroscopic technique widely used for chemical characterization. However, it lacks the sensitivity to probe the small number of spins at surfaces and interfaces. Here, we use nitrogen vacancy (NV) centers in diamond as quantum sensors to optically detect NMR signals from chemically modified thin films. To demonstrate the method's capabilities, aluminum oxide layers, common supports in catalysis and materials science, are prepared by atomic layer deposition and are subsequently functionalized by phosphonate chemistry to form self-assembled monolayers. The surface NV-NMR technique detects spatially resolved NMR signals from the monolayer, indicates chemical binding, and quantifies molecular coverage. In addition, it can monitor in real time the formation kinetics at the solid-liquid interface. With our approach, we show that NV quantum sensors are a surface-sensitive NMR tool with femtomole sensitivity for in situ analysis in catalysis, materials, and biological research.
RESUMO
Hybrid inorganic/organic heterointerfaces are promising systems for next-generation photocatalytic, photovoltaic, and chemical-sensing applications. Their performance relies strongly on the development of robust and reliable surface passivation and functionalization protocols with (sub)molecular control. The structure, stability, and chemistry of the semiconductor surface determine the functionality of the hybrid assembly. Generally, these modification schemes have to be laboriously developed to satisfy the specific chemical demands of the semiconductor surface. The implementation of a chemically independent, yet highly selective, standardized surface functionalization scheme, compatible with nanoelectronic device fabrication, is of utmost technological relevance. Here, we introduce a modular surface assembly (MSA) approach that allows the covalent anchoring of molecular transition-metal complexes with sub-nanometer precision on any solid material by combining atomic layer deposition (ALD) and selectively self-assembled monolayers of phosphonic acids. ALD, as an essential tool in semiconductor device fabrication, is used to grow conformal aluminum oxide activation coatings, down to sub-nanometer thicknesses, on silicon surfaces to enable a selective step-by-step layer assembly of rhenium(I) bipyridine tricarbonyl molecular complexes. The modular surface assembly of molecular complexes generates precisely structured spatial ensembles with strong intermolecular vibrational and electronic coupling, as demonstrated by infrared spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy analysis. The structure of the MSA can be chosen to avoid electronic interactions with the semiconductor substrate to exclusively investigate the electronic interactions between the surface-immobilized molecular complexes.
RESUMO
Label-free detection of charged biomolecules, such as DNA, has experienced an increase in research activity in recent years, mainly to obviate the need for elaborate and expensive pretreatments for labeling target biomolecules. A promising label-free approach is based on the detection of changes in the electrical surface potential on biofunctionalized silicon field-effect devices. These devices require a reliable and selective immobilization of charged biomolecules on the device surface. In this work, self-assembled monolayers of phosphonic acids are used to prepare organic interfaces with a high density of peptide nucleic acid (PNA) bioreceptors, which are a synthetic analogue to DNA, covalently bound either in a multidentate (â¥PNA) or monodentate (â¥PNA) fashion to the underlying silicon native oxide surface. The impact of the PNA bioreceptor orientation on the sensing platform's surface properties is characterized in detail by water contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Our results suggest that the multidentate binding of the bioreceptor via attachment groups at the γ-points along the PNA backbone leads to the formation of an extended, protruding, and netlike three-dimensional metastructure. Typical "mesh" sizes are on the order of 8 ± 2.5 nm in diameter, with no preferential spatial orientation relative to the underlying surface. Contrarily, the monodentate binding provides a spatially more oriented metastructure comprising cylindrical features, of a typical size of 62 ± 23 × 12 ± 2 nm2. Additional cyclic voltammetry measurements in a redox buffer solution containing a small and highly mobile Ru-based complex reveal strikingly different insulating properties (ion diffusion kinetics) of these two PNA systems. Investigation by electrochemical impedance spectroscopy confirms that the binding mode has a significant impact on the electrochemical properties of the functional PNA layers represented by detectable changes of the conductance and capacitance of the underlying silicon substrate in the range of 30-50% depending on the surface organization of the bioreceptors in different bias potential regimes.
Assuntos
Ácidos Nucleicos Peptídicos/química , Espectroscopia Dielétrica , Capacitância Elétrica , Condutividade Elétrica , Técnicas Eletroquímicas , Ácidos Nucleicos Imobilizados/química , Microscopia de Força Atômica , Organofosfonatos/química , Silício/química , Propriedades de SuperfícieRESUMO
We report the binding mode of amines and phosphines on platinum nanoparticles. Protective ligands comprising different functional groups are systematically studied for the elucidation of ligand binding at different functionalization conditions. From the functionalization conditions it is concluded that the binding of amines to the nanoparticles occurs via the formation of a PtHN moiety or electrostatic interaction, which is supported by spectroscopic evidences. In particular from complex chemistry such a binding mode is surprising, as amines are expected to bind via their electron pair to the metal. Similar results from functionalization are observed for phosphine-protected nanoparticles, which suggest similar binding modes in these systems. In contrast to the strong covalent bond of the protection with thiols, considerable weakly binding systems result. The characteristics of the binding mode are reflected by the stability of the colloids and their catalytic properties. In the selective hydrogenation of 3-hexyne to 3-hexene thiolate-stabilized Pt particles are highly stable, but exhibit the lowest activity. On the other hand, amine- and phosphine-capped platinum nanoparticles show a significantly higher activity, but rapidly agglomerate.