Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 112(11): 2397-2407, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28591612

RESUMO

A particularly promising medical application of cold physical plasma is the support of wound healing. This is presumably achieved by modulating inflammation as well as skin cell signaling and migration. Plasma-derived reactive oxygen and nitrogen species (ROS/RNS) are assumed the central biologically active plasma components. We hypothesized that modulating the environmental plasma conditions from pure nitrogen (N2) to pure oxygen (O2) in an atmospheric pressure argon plasma jet (kINPen) will change type and concentration of ROS/RNS and effectively tune the behavior of human skin cells. To investigate this, HaCaT keratinocytes were studied in vitro with regard to cell metabolism, viability, growth, gene expression signature, and cytokine secretion. Flow cytometry demonstrated only slight effects on cytotoxicity. O2 shielding provided stronger apoptotic effects trough caspase-3 activation compared to N2 shielding. Gene array technology revealed induction of signaling and communication proteins such as immunomodulatory interleukin 6 as well as antioxidative and proproliferative molecules (HMOX1, VEGFA, HBEGF, CSF2, and MAPK) in response to different plasma shielding gas compositions. Cell response was correlated to reactive species: oxygen-shielding plasma induces a cell response more efficiently despite an apparent decrease of hydrogen peroxide (H2O2), which was previously shown to be a major player in plasma-cell regulation, emphasizing the role of non-H2O2 ROS like singlet oxygen. Our results suggest differential effects of ROS- and RNS-rich plasma, and may have a role in optimizing clinical plasma applications in chronic wounds.


Assuntos
Fármacos Dermatológicos/química , Fármacos Dermatológicos/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Gases em Plasma/química , Gases em Plasma/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Espectroscopia de Ressonância de Spin Eletrônica , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Análise em Microsséries , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma/efeitos dos fármacos
2.
Cell Biol Int ; 38(4): 412-25, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24155089

RESUMO

Modern non-thermal atmospheric pressure plasma sources enable controllable interaction with biological systems. Their future applications - e.g. wound management - are based on their unique mixture of reactive components sparking both stimulatory as well as inhibitory processes. To gain detailed understanding of plasma-cell interaction and with respect to risk awareness, key mechanisms need to be identified. This study focuses on the impact of an argon non-thermal atmospheric pressure plasma jet (kINPen 09) on human HaCaT keratinocytes. With increasing duration, cell viability decreased. In accordance, cells accumulated in G2/M phase within the following 24 h. DNA single-strand breaks were detected immediately after treatment and receded in the aftermath, returning to control levels after 24 h. No directly plasma-related DNA double-strand breaks were detected over the same time. Concurrently, DNA synthesis decreased. Coincident with treatment time, an increase in intracellular 2',7'-dichlorodihydrofluorescein diacetate (H(2)DCFDA) conversion increased reactive oxygen species (ROS) levels. The radical scavenging activity of culture medium crucially influenced these effects. Thus, ROS changed DNA integrity, and the effectiveness of cellular defence mechanisms characterises the interaction of non-thermal plasma and eukaryotic cells. Effects were time-dependent, indicating an active response of the eukaryotic cells. Hence, a stimulation of eukaryotic cells using short-term non-thermal plasma treatment seems possible, eg in the context of chronic wound care. Long-term plasma treatments stopped in cell proliferation and apoptosis, which might be relevant in controlling neoplastic conditions.


Assuntos
Queratinócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Gases em Plasma/farmacologia , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Fluoresceínas/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
3.
Immunobiology ; 218(10): 1248-55, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23735483

RESUMO

In the field of wound healing research non-thermal plasma (NTP) increasingly draws attention. Next to its intensely studied antibacterial effects, some studies already showed stimulating effects on eukaryotic cells. This promises a unique potential in healing of chronic wounds, where effective therapies are urgently needed. Immune cells do play an important part in the process of wound healing and their reaction to NTP treatment has yet been rarely examined. Here, we studied the impact of NTP treatment using the kinpen on apoptotic and proliferative cell signaling pathways of two human immune cell lines, the CD4(+)T helper cell line Jurkat and the monocyte cell line THP-1. Depending on NTP treatment time the number of apoptotic cells increased in both investigated cell types according to a caspase 3 assay. Western blot analysis pointed out that plasma treatment activated pro-apoptotic signaling proteins like p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase 1 and 2 (JNK 1/2) in both cell types. Stronger signals were detected in Jurkat cells at comparable plasma treatment times. Intriguingly, exposure of Jurkat and THP-1 cells to plasma also activated the pro-proliferative signaling molecules extracellular signal-regulated kinase 1/2 (ERK 1/2) and MAPK/ERK kinase 1 and 2 (MEK 1/2). In contrast to Jurkat cells, the anti-apoptotic heat shock protein 27 (HSP27) was activated in THP-1 cells after plasma treatment, indicating a possible mechanism how THP-1 cells may reduce programmed cell death. In conclusion, several signaling cascades were activated in the examined immune cell lines after NTP treatment and in THP-1 monocytes a possible defense mechanism against plasma impacts could be revealed. Therefore, plasma might be a treatment option for wound healing.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Monócitos/imunologia , Gases em Plasma/metabolismo , Apoptose , Caspase 3/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Células Jurkat , Sistema de Sinalização das MAP Quinases/imunologia , Especificidade de Órgãos , Cicatrização/imunologia
4.
Free Radic Res ; 47(8): 577-92, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23668811

RESUMO

Non-thermal atmospheric pressure plasma has recently gained attention in the field of biomedical and clinical applications. In the area of plasma medicine research, one promising approach is to promote wound healing by stimulation of cells involved. To understand basic molecular and cellular mechanisms triggered by plasma treatment, we investigated biological effects of an argon plasma jet kinpen on human epithelial skin cells. For assessment of transcriptome changes cell culture medium was plasma treated and applied to the HaCaT keratinocyte cell culture (indirect treatment). Consequently, whole-genome microarrays were used to analyze this interaction in detail and identified a statistically significant modification of 3,274 genes including 1,828 up- and 1,446 downregulated genes. Particularly, cells after indirect plasma treatment are characterized by differential expression of a considerable number of genes involved in the response to stress. In this regard, we found a plasma-dependent regulation of oxidative stress answer and increased expression of enzymes of the antioxidative defense system (e.g. 91 oxidoreductases). Our results demonstrate that plasma not only induces cell reactions of stress-sensing but also of proliferative nature. Consistent with gene expression changes as well as Ingenuity Pathway Analysis prediction, we propose that stimulating doses of plasma may protect epithelial skin cells in wound healing by promoting proliferation and differentiation. In conclusion, gene expression profiling may become an important tool in identifying plasma-related changes of gene expression. Our results underline the enormous clinical potential of plasma as a biomedical tool for stimulation of epithelial skin cells.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Gases em Plasma/farmacologia , Pele/citologia , Transcriptoma/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/citologia , Perfilação da Expressão Gênica , Células HeLa , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa