Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 440(7080): 96-100, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16511496

RESUMO

Iron has a fundamental role in many metabolic processes, including electron transport, deoxyribonucleotide synthesis, oxygen transport and many essential redox reactions involving haemoproteins and Fe-S cluster proteins. Defective iron homeostasis results in either iron deficiency or iron overload. Precise regulation of iron transport in mitochondria is essential for haem biosynthesis, haemoglobin production and Fe-S cluster protein assembly during red cell development. Here we describe a zebrafish mutant, frascati (frs), that shows profound hypochromic anaemia and erythroid maturation arrest owing to defects in mitochondrial iron uptake. Through positional cloning, we show that the gene mutated in the frs mutant is a member of the vertebrate mitochondrial solute carrier family (SLC25) that we call mitoferrin (mfrn). mfrn is highly expressed in fetal and adult haematopoietic tissues of zebrafish and mouse. Erythroblasts generated from murine embryonic stem cells null for Mfrn (also known as Slc25a37) show maturation arrest with severely impaired incorporation of 55Fe into haem. Disruption of the yeast mfrn orthologues, MRS3 and MRS4, causes defects in iron metabolism and mitochondrial Fe-S cluster biogenesis. Murine Mfrn rescues the defects in frs zebrafish, and zebrafish mfrn complements the yeast mutant, indicating that the function of the gene may be highly conserved. Our data show that mfrn functions as the principal mitochondrial iron importer essential for haem biosynthesis in vertebrate erythroblasts.


Assuntos
Eritroblastos/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Anemia/sangue , Anemia/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Diferenciação Celular , Sequência Conservada , Eritroblastos/citologia , Eritroblastos/patologia , Regulação da Expressão Gênica , Teste de Complementação Genética , Heme/metabolismo , Homeostase , Humanos , Sobrecarga de Ferro , Proteínas Ferro-Enxofre/biossíntese , Proteínas Ferro-Enxofre/genética , Proteínas de Membrana Transportadoras/genética , Camundongos , Proteínas Mitocondriais , Dados de Sequência Molecular , Mutação/genética , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
2.
Blood ; 114(21): 4654-63, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19729519

RESUMO

The nuclear protein FOG-1 binds transcription factor GATA-1 to facilitate erythroid and megakaryocytic maturation. However, little is known about the function of FOG-1 during myeloid and lymphoid development or how FOG-1 expression is regulated in any tissue. We used in situ hybridization, gain- and loss-of-function studies in zebrafish to address these problems. Zebrafish FOG-1 is expressed in early hematopoietic cells, as well as heart, viscera, and paraspinal neurons, suggesting that it has multifaceted functions in organogenesis. We found that FOG-1 is dispensable for endoderm specification but is required for endoderm patterning affecting the expression of late-stage T-cell markers, independent of GATA-1. The suppression of FOG-1, in the presence of normal GATA-1 levels, induces severe anemia and thrombocytopenia and expands myeloid-progenitor cells, indicating that FOG-1 is required during erythroid/myeloid commitment. To functionally interrogate whether GATA-1 regulates FOG-1 in vivo, we used bioinformatics combined with transgenic assays. Thus, we identified 2 cis-regulatory elements that control the tissue-specific gene expression of FOG-1. One of these enhancers contains functional GATA-binding sites, indicating the potential for a regulatory loop in which GATA factors control the expression of their partner protein FOG-1.


Assuntos
Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares , Proteínas de Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Hematopoese/fisiologia , Hibridização In Situ , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Elementos Reguladores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
PLoS Biol ; 2(8): E237, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15314655

RESUMO

Hematopoiesis is precisely orchestrated by lineage-specific DNA-binding proteins that regulate transcription in concert with coactivators and corepressors. Mutations in the zebrafish moonshine (mon) gene specifically disrupt both embryonic and adult hematopoiesis, resulting in severe red blood cell aplasia. We report that mon encodes the zebrafish ortholog of mammalian transcriptional intermediary factor 1gamma (TIF1gamma) (or TRIM33), a member of the TIF1 family of coactivators and corepressors. During development, hematopoietic progenitor cells in mon mutants fail to express normal levels of hematopoietic transcription factors, including gata1, and undergo apoptosis. Three different mon mutant alleles each encode premature stop codons, and enforced expression of wild-type tif1gamma mRNA rescues embryonic hematopoiesis in homozygous mon mutants. Surprisingly, a high level of zygotic tif1gamma mRNA expression delineates ventral mesoderm during hematopoietic stem cell and progenitor formation prior to gata1 expression. Transplantation studies reveal that tif1gamma functions in a cell-autonomous manner during the differentiation of erythroid precursors. Studies in murine erythroid cell lines demonstrate that Tif1gamma protein is localized within novel nuclear foci, and expression decreases during erythroid cell maturation. Our results establish a major role for this transcriptional intermediary factor in the differentiation of hematopoietic cells in vertebrates.


Assuntos
Eritrócitos/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia , Alelos , Animais , Apoptose , Transplante de Medula Óssea , Diferenciação Celular , Linhagem Celular , Núcleo Celular/metabolismo , Sobrevivência Celular , Transplante de Células , Clonagem Molecular , Códon de Terminação , DNA/química , Proteínas de Ligação a DNA/química , Eritrócitos/citologia , Regulação da Expressão Gênica , Hematopoese , Células-Tronco Hematopoéticas/citologia , Heterocromatina/metabolismo , Homozigoto , Immunoblotting , Camundongos , Dados de Sequência Molecular , Mutação , Fenótipo , Ligação Proteica , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Peixe-Zebra , Proteínas de Peixe-Zebra/química
4.
Proc Natl Acad Sci U S A ; 104(16): 6608-13, 2007 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-17416673

RESUMO

The spliceosome cycle consists of assembly, catalysis, and recycling phases. Recycling of postspliceosomal U4 and U6 small nuclear ribonucleoproteins (snRNPs) requires p110/SART3, a general splicing factor. In this article, we report that the zebrafish earl grey (egy) mutation maps in the p110 gene and results in a phenotype characterized by thymus hypoplasia, other organ-specific defects, and death by 7 to 8 days postfertilization. U4/U6 snRNPs were disrupted in egy mutant embryos, demonstrating the importance of p110 for U4/U6 snRNP recycling in vivo. Surprisingly, expression profiling of the egy mutant revealed an extensive network of coordinately up-regulated components of the spliceosome cycle, providing a mechanism compensating for the recycling defect. Together, our data demonstrate that a mutation in a general splicing factor can lead to distinct defects in organ development and cause disease.


Assuntos
RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Spliceossomos/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra , Animais , Genes Letais , Mutagênese , Especificidade de Órgãos/genética , Fenótipo , Fatores de Processamento de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Timo/anormalidades , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Development ; 129(18): 4359-70, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12183387

RESUMO

The red blood cell membrane skeleton is an elaborate and organized network of structural proteins that interacts with the lipid bilayer and transmembrane proteins to maintain red blood cell morphology, membrane deformability and mechanical stability. A crucial component of red blood cell membrane skeleton is the erythroid specific protein 4.1R, which anchors the spectrin-actin based cytoskeleton to the plasma membrane. Qualitative and quantitative defects in protein 4.1R result in congenital red cell membrane disorders characterized by reduced cellular deformability and abnormal cell morphology. The zebrafish mutants merlot (mot) and chablis (cha) exhibit severe hemolytic anemia characterized by abnormal cell morphology and increased osmotic fragility. The phenotypic analysis of merlot indicates severe hemolysis of mutant red blood cells, consistent with the observed cardiomegaly, splenomegaly, elevated bilirubin levels and erythroid hyperplasia in the kidneys. The result of electron microscopic analysis demonstrates that mot red blood cells have membrane abnormalities and exhibit a severe loss of cortical membrane organization. Using positional cloning techniques and a candidate gene approach, we demonstrate that merlot and chablis are allelic and encode the zebrafish erythroid specific protein 4.1R. We show that mutant cDNAs from both alleles harbor nonsense point mutations, resulting in premature stop codons. This work presents merlot/chablis as the first characterized non-mammalian vertebrate models of hereditary anemia due to a defect in protein 4.1R integrity.


Assuntos
Anemia Hemolítica/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Mutação , Neuropeptídeos , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Códon sem Sentido , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Primers do DNA , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Modelos Animais de Doenças , Membrana Eritrocítica/fisiologia , Membrana Eritrocítica/ultraestrutura , Ligação Genética , Proteínas de Membrana/metabolismo , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa