RESUMO
Whether post-transcriptional regulation of gene expression controls differentiation of stem cells for tissue renewal remains unknown. Quiescent stem cells exhibit a low level of protein synthesis1, which is key to maintaining the pool of fully functional stem cells, not only in the brain but also in the bone marrow and hair follicles2-6. Neurons also maintain a subset of messenger RNAs in a translationally silent state, which react 'on demand' to intracellular and extracellular signals. This uncoupling of general availability of mRNA from translation into protein facilitates immediate responses to environmental changes and avoids excess production of proteins, which is the most energy-consuming process within the cell. However, when post-transcriptional regulation is acquired and how protein synthesis changes along the different steps of maturation are not known. Here we show that protein synthesis undergoes highly dynamic changes when stem cells differentiate to neurons in vivo. Examination of individual transcripts using RiboTag mouse models reveals that whereas stem cells translate abundant transcripts with little discrimination, translation becomes increasingly regulated with the onset of differentiation. The generation of neurogenic progeny involves translational repression of a subset of mRNAs, including mRNAs that encode the stem cell identity factors SOX2 and PAX6, and components of the translation machinery, which are enriched in a pyrimidine-rich motif. The decrease of mTORC1 activity as stem cells exit the cell cycle selectively blocks translation of these transcripts. Our results reveal a control mechanism by which the cell cycle is coupled to post-transcriptional repression of key stem cell identity factors, thereby promoting exit from stemness.
Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Biossíntese de Proteínas , Transcrição Gênica , Regiões 5' não Traduzidas/genética , Animais , Ciclo Celular/genética , Feminino , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neurogênese/genética , Fatores de TempoRESUMO
Adult neural stem cells are generated at embryonic stages by entering a quiescent state that allows their retention into adulthood and thereby maintenance of life-long brain homeostasis. Thus, a tight balance between the quiescence and activation state is instrumental to meet the brain demands for a specific cell type at the correct numbers, at a given time and position. Protein synthesis is the most energy-consuming process within the cell and, not surprisingly, it occurs at low rates in quiescent stem cells. This way quiescent cells adjust to energy constraints and avoid their premature depletion. Stem cell activation is characterized by upregulation of protein synthesis followed by cell division and differentiation. The role of such upregulation as causative or rather a consequence of the activation remains elusive. Here we summarize recent findings connecting stem cell activation to the regulation of protein synthesis, particularly focusing on embryonic and adult neural stem cells of the ventricular zone.
RESUMO
Heterogeneous pools of adult neural stem cells (NSCs) contribute to brain maintenance and regeneration after injury. The balance of NSC activation and quiescence, as well as the induction of lineage-specific transcription factors, may contribute to diversity of neuronal and glial fates. To identify molecular hallmarks governing these characteristics, we performed single-cell sequencing of an unbiased pool of adult subventricular zone NSCs. This analysis identified a discrete, dormant NSC subpopulation that already expresses distinct combinations of lineage-specific transcription factors during homeostasis. Dormant NSCs enter a primed-quiescent state before activation, which is accompanied by downregulation of glycolytic metabolism, Notch, and BMP signaling and a concomitant upregulation of lineage-specific transcription factors and protein synthesis. In response to brain ischemia, interferon gamma signaling induces dormant NSC subpopulations to enter the primed-quiescent state. This study unveils general principles underlying NSC activation and lineage priming and opens potential avenues for regenerative medicine in the brain.
Assuntos
Lesões Encefálicas/patologia , Perfilação da Expressão Gênica/métodos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Análise de Célula Única/métodos , Animais , Isquemia Encefálica/patologia , Diferenciação Celular , Linhagem da Célula , Interferon gama/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Transcrição GênicaRESUMO
Multiple processes are involved in gene expression including transcription, translation and stability of mRNAs and proteins. Each of these steps are tightly regulated, affecting the final dynamics of protein abundance. Various regulatory mechanisms exist at the translation step, rendering mRNA levels alone an unreliable indicator of gene expression. In addition, local regulation of mRNA translation has been particularly implicated in neuronal functions, shifting 'translatomics' to the focus of attention in neurobiology. The presented method can be used to bridge transcriptomics and proteomics. Here we describe essential modifications to the technique of polyribosome fractionation, which interrogates the translatome based on the association of actively translated mRNAs to multiple ribosomes and their differential sedimentation in sucrose gradients. Traditionally, working with in vivo samples, particularly of the central nervous system (CNS), has proven challenging due to the restricted amounts of material and the presence of fatty tissue components. In order to address this, the described protocol is specifically optimized for use with minimal amount of CNS material, as demonstrated by the use of single mouse spinal cord and brain. Briefly, CNS tissues are extracted and translating ribosomes are immobilized on mRNAs with cycloheximide. Myelin flotation is then performed to remove lipid rich components. Fractionation is performed on a sucrose gradient where mRNAs are separated according to their ribosomal loading. Isolated fractions are suitable for a range of downstream assays, including new genome wide assay technologies.
Assuntos
Fracionamento Celular/métodos , Sistema Nervoso Central/fisiologia , Perfilação da Expressão Gênica/métodos , Polirribossomos/química , Animais , Sistema Nervoso Central/química , Camundongos , Polirribossomos/genética , Biossíntese de Proteínas , RNA/análise , RNA/genética , Transcrição GênicaRESUMO
In recent years, and largely supported by the increasing use of transfection technology, much research attention has been given to protein trafficking in the Plasmodium falciparum infected red blood cell. By expression of fluorescent reporter proteins, much information has been gained on both the signals and mechanisms directing proteins to their correct sub-cellular localisation within the parasite and infected host cell. Generally however, verification of the observed fluorescent phenotype is carried out using more traditional techniques such as co-immunofluorescence, protease protection, and cell fractionation followed by Western blot. Here we apply a self-assembling split GFP (saGFP) system and show that this can be used to determine both membrane topology and compartmentalisation using transfection technology alone. As an example, we verify the topology of an ER membrane protein, hDer1-1, and of an exported parasite Hsp40 co-chaperone, PFE55. Additionally, we can demonstrate that this system has the potential to be applied to analysis of organellar proteins.