RESUMO
Global change is altering the vast amount of carbon cycled by microbes between land and freshwater, but how viruses mediate this process is poorly understood. Here, we show that viruses direct carbon cycling in lake sediments, and these impacts intensify with future changes in water clarity and terrestrial organic matter (tOM) inputs. Using experimental tOM gradients within sediments of a clear and a dark boreal lake, we identified 156 viral operational taxonomic units (vOTUs), of which 21% strongly increased with abundances of key bacteria and archaea, identified via metagenome-assembled genomes (MAGs). MAGs included the most abundant prokaryotes, which were themselves associated with dissolved organic matter (DOM) composition and greenhouse gas (GHG) concentrations. Increased abundances of virus-like particles were separately associated with reduced bacterial metabolism and with shifts in DOM toward amino sugars, likely released by cell lysis rather than higher molecular mass compounds accumulating from reduced tOM degradation. An additional 9.6% of vOTUs harbored auxiliary metabolic genes associated with DOM and GHGs. Taken together, these different effects on host dynamics and metabolism can explain why abundances of vOTUs rather than MAGs were better overall predictors of carbon cycling. Future increases in tOM quantity, but not quality, will change viral composition and function with consequences for DOM pools. Given their importance, viruses must now be explicitly considered in efforts to understand and predict the freshwater carbon cycle and its future under global environmental change.
Assuntos
Gases de Efeito Estufa , Vírus , Amino Açúcares/metabolismo , Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Gases de Efeito Estufa/metabolismo , Lagos/microbiologia , Vírus/genética , Vírus/metabolismo , Água/metabolismoRESUMO
Anthropogenically elevated inputs of nitrogen (N), phosphorus (P), and potassium (K) can affect the carbon (C) budget of nutrient-poor peatlands. Fungi are intimately tied to peatland C budgets due to their roles in organic matter decomposition and symbioses with primary producers; however, the influence of fertilization on peatland fungal composition and diversity remains unclear. Here, we examined the effect of fertilization over 10 years on fungal diversity, composition, and functional guilds along an acrotelm (10-20 cm), mesotelm (30-40 cm), and catotelm (60-70 cm) depth gradient at the Mer Bleue bog, Canada. Simultaneous N and PK additions decreased the relative abundance of ericoid mycorrhizal fungi and increased ectomycorrhizal fungi and lignocellulose-degrading fungi. Fertilization effects were not more pronounced in the acrotelm relative to the catotelm, nor was there a shift toward nitrophilic taxa after N addition. The direct effect of fertilization significantly decreased the abundance of Sphagnum-associated fungi, primarily owing to the overarching role of limiting nutrients rather than a decline in Sphagnum cover. Increased nutrient loading may threaten peatland C stocks if lignocellulose-degrading fungi become abundant and accelerate decomposition of recalcitrant organic matter. Additionally, future changes in plant communities, strong water table fluctuations, and peat subsidence after long-term nutrient loading may also influence fungal functional guilds and depth-dependencies of fungal community structure.
Assuntos
Fertilizantes , Fungos , Micorrizas , Nitrogênio , Fósforo , Nitrogênio/metabolismo , Fungos/fisiologia , Fungos/metabolismo , Fertilizantes/análise , Fósforo/metabolismo , Fósforo/análise , Micorrizas/fisiologia , Potássio/metabolismo , Potássio/análise , Áreas Alagadas , Microbiologia do Solo , Micobioma , Biodiversidade , Sphagnopsida/microbiologiaRESUMO
Peatlands are found on all continents, covering 3% of the global land area. However, the spatial extent and causes of metal enrichment in peatlands is understudied and no attempt has been made to evaluate global patterns of metal enrichment in bog and fen peatlands, despite that certain metals and rare earth elements (REE) arise from anthropogenic sources. We analyzed 368 peat cores sampled in 16 countries across five continents and measured metal and other element concentrations at three depths down to 70 cm as well as estimated cumulative atmospheric S deposition (1850-2009) for each site. Sites were assigned to one of three distinct broadly recognized peatland categories (bog, poor fen, and intermediate-to-moderately rich fen) that varied primarily along a pH gradient. Metal concentrations differed among peatland types, with intermediate-to-moderately rich fens demonstrating the highest concentrations of most metals. Median enrichment factors (EFs; a metric comparing natural and anthropogenic metal deposition) for individual metals were similar among bogs and fens (all groups), with metals likely to be influenced by anthropogenic sources (As, Cd, Co, Cu, Hg, Pb, and Sb) demonstrating median enrichment factors (EFs) > 1.5. Additionally, mean EFs were substantially higher than median values, and the positive correlation (< 0.40) with estimated cumulative atmospheric S deposition, confirmed some level of anthropogenic influence of all pollutant metals except for Hg that was unrelated to S deposition. Contrary to expectations, high EFs were not restricted to pollutant metals, with Mn, K and Rb all exhibiting elevated median EFs that were in the same range as pollutant metals likely due to peatland biogeochemical processes leading to enrichment of these nutrients in surface soil horizons. The global patterns of metal enrichment in bogs and fens identified in this study underscore the importance of these peatlands as environmental archives of metal deposition, but also illustrates that biogeochemical processes can enrich metals in surface peat and EFs alone do not necessarily indicate atmospheric contamination.
Assuntos
Poluentes Ambientais , Mercúrio , Áreas Alagadas , Metais , Mercúrio/análise , SoloRESUMO
Peatlands store approximately one-half of terrestrial soil carbon and one-tenth of non-glacial freshwater. Some of these important ecosystems are located near heavy metal emitting smelters. To improve the understanding of smelter impacts and potential recovery after initial pollution controls in the 1970s (roughly 50 years of potential recovery), we sampled peatlands along a distance gradient of 134 km from a smelter in Sudbury, Ontario, Canada, an area with over a century of nickel (Ni) and copper (Cu) mining activity. This work is aimed at evaluating potential shifts in bacterial and archaeal community structures in Sphagnum moss and its underlying peat within smelter-impacted poor fens. In peat, total Ni and Cu concentrations were higher (0.062-0.067 and 0.110-0.208 mg/g, respectively) at sites close to the smelter and exponentially dropped with distance from the smelter. This exponential decrease in Ni concentrations was also observed in Sphagnum. 16S rDNA amplicon sequencing showed that peat and Sphagnum moss host distinct microbiomes with peat accommodating a more diverse community structure. The microbiomes of Sphagnum were dominated by Proteobacteria (62.5%), followed by Acidobacteria (11.9%), with no observable trends with distance from the smelter. Dominance of Acidobacteria (32.4%) and Proteobacteria (29.6%) in peat was reported across all sites. No drift in taxonomy was seen across the distance gradient or from the reference sites, suggesting a potential microbiome recovery toward that of the reference peatlands microbiomes after decades of pollution controls. These results advance the understanding of peat and Sphagnum moss microbiomes, as well as depict the sensitivities and the resilience of peatland ecosystems.
Assuntos
Metais Pesados , Sphagnopsida , Ecossistema , Solo/química , OntárioRESUMO
Facilitating the establishment of native pioneer plant species on mine tailings with inherent metal and/or acid tolerance is important to speed up natural succession at minimal cost, especially in remote areas where phytoremediation can be labor intensive. We investigated vegetation community dynamics after â¼48 years of succession along two legacy Ni-Cu mine tailings and waste rock deposits in the Sudbury Basin, Ontario, Canada with and without various site amendments (i.e. liming and fertilization) and planting. Metal/acid tolerant pioneer plants (Betula papyrifera, Populus tremuloides, Pohlia nutans) appeared to facilitate the establishment of less tolerant species. Conifers and nitrogen-fixers less tolerant to site conditions were planted at the fully amended (limed, fertilized, planted) mine tailings site in the 1970s, but conifers were not propagating at the site or facilitating understory succession. The planted nitrogen-fixing leguminous species Lotus corniculatus was, however, associated with increased diversity. These findings have implications for long-term reclamation strategies in acidic mine waste deposits utilizing native species, as primary colonizing tree species are only recently emerging as candidates for phytoremediation. Novelty statement The potential for native species to act as facilitators for vegetation colonization has rarely been investigated on tailings, despite wide use in remediation of less toxic sites. This study provides a retrospective of over 40 years of plant growth following initial treatment of toxic tailings. We observed that regardless of tailings geochemical conditions, acid/metal tolerant pioneer plants were facilitating ecological succession on acidic Ni-Cu mine tailings sites.
Assuntos
Poluentes do Solo , Biodegradação Ambiental , Metais , Nitrogênio , Plantas , Estudos Retrospectivos , Solo , Poluentes do Solo/análiseRESUMO
For mass culture of photosynthetic green microalgae, industrial flue gases can represent a low-cost resource of CO2. However, flue gases are often avoided, because they often also contain high levels of SO2 and/or NO2, which cause significant acidification of media to below pH 3 due to production of sulfuric and nitric acid. This creates an unsuitable environment for the neutrophilic microalgae commonly used in large-scale commercial production. To address this issue, we have looked at selecting acid-tolerant microalgae via growth at pH 2.5 carried out with samples bioprospected from an active smelter site. Of the eight wild samples collected, one consisting mainly of Coccomyxa sp. grew at pH 2.5 and achieved a density of 640 mg L-1. Furthermore, three previously bioprospected green microalgae from acidic waters (pH 3-4.5) near abandoned mine sites were also re-acclimated down to their in-situ pH environment after approximately 4 years spent at neutral pH. Of those three, an axenic culture of Coccomyxa sp. was the most successful at re-acclimating and achieved the highest density of 293.1 mg L-1 and maximum daily productivity of 38.8 mg L-1 day-1 at pH 3. Re-acclimation of acid-tolerant species is, therefore, achievable when directly placed at their original pH, but gradual reduction in pH is recommended to give the cells time to acclimate.
Assuntos
Clorófitas , Microalgas , Aclimatação , Biomassa , Dióxido de Carbono , Gases , Concentração de Íons de HidrogênioRESUMO
Peatlands are important players in climate change-biosphere feedbacks via long-term net carbon (C) accumulation in soil organic matter and as potential net C sources including the potent greenhouse gas methane (CH4). Interactions of climate, site-hydrology, plant community, and groundwater chemical factors influence peatland development and functioning, including C dioxide (CO2) and CH4 fluxes, but the role of microbial community composition is not well understood. To assess microbial functional and taxonomic dissimilarities, we used high throughput sequencing of the small subunit ribosomal DNA (SSU rDNA) to determine bacterial and archaeal community composition in soils from twenty North American peatlands. Targeted DNA metabarcoding showed that although Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla on average, intermediate and rich fens hosted greater diversity and taxonomic richness, as well as an array of candidate phyla when compared with acidic and nutrient-poor poor fens and bogs. Moreover, pH was revealed to be the strongest predictor of microbial community structure across sites. Predictive metagenome content (PICRUSt) showed increases in specific genes, such as purine/pyrimidine and amino-acid metabolism in mid-latitude peatlands from 38 to 45° N, suggesting a shift toward utilization of microbial biomass over utilization of initial plant biomass in these microbial communities. Overall, there appears to be noticeable differences in community structure between peatland classes, as well as differences in microbial metabolic activity between latitudes. These findings are in line with a predicted increase in the decomposition and accelerated C turnover, and suggest that peatlands north of 37° latitude may be particularly vulnerable to climate change.
Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Clima , Microbiota , Áreas Alagadas , Ontário , Microbiologia do Solo , Estados UnidosRESUMO
A growth chamber trial was conducted to investigate the effects of blends of pulp and paper mill residuals and forest humus on soil properties, microbial communities and germination rate and biomass production of annual ryegrass (Lolium multiflorum) in both acid-producing and neutral to mildly alkaline mine tailings in a mine reclamation context. The organic residual amendments improved the nutritional status of the tailings substrates, and increased pH in acid-generating tailings, leading to higher germination rates and improved plant growth. A trace addition (<0.02% of sludge by dry weight) of natural forest floor material as a microbial inoculum to the sludge could increase plant biomass up to four-fold. The effects of sludge application on bioavailability of metals were variable, with the concentration of soluble copper (Cu) and nickel (Ni) increasing in some of the substrates following organic amendments. Addition of paper mill residuals to mine tailings modified the microbial communities observed in the oligotrophic tailings with the majority of DNA sequences in the sludge amended substrates being found to be closely related to heterotrophic bacterial species rather than the chemolithotrophic communities that dominate tailings environments.
Assuntos
Inoculantes Agrícolas/metabolismo , Cobre/química , Metais/química , Poluentes do Solo/análise , Inoculantes Agrícolas/química , Bactérias , Biomassa , Florestas , Desenvolvimento Vegetal , Plantas , Esgotos/análise , Esgotos/química , SoloRESUMO
Plant genetic variation and evolutionary dynamics are predicted to impact ecosystem processes but these effects are poorly understood. Here we test the hypothesis that plant genotype and contemporary evolution influence the flux of energy and nutrients through soil, which then feedback to affect seedling performance in subsequent generations. We conducted a multiyear field evolution experiment using the native biennial plant Oenothera biennis. This experiment was coupled with experimental assays to address our hypothesis and quantify the relative importance of evolutionary and ecological factors on multiple ecosystem processes. Plant genotype, contemporary evolution, spatial variation, and herbivory affected ecosystem processes (e.g., leaf decay, soil respiration, seedling performance, N cycling), but their relative importance varied between specific ecosystem variables. Insect herbivory and evolution also contributed to a feedback that affected seedling biomass of O. biennis in the next generation. Our results show that heritable variation among plant genotypes can be an important factor affecting local ecosystem processes, and while effects of contemporary evolution were detectable and sometimes strong, they were often contingent on other ecological, factors.
Assuntos
Evolução Biológica , Ecossistema , Genótipo , Oenothera biennis/genética , Nitrogênio/química , Consumo de Oxigênio , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Solo/químicaRESUMO
To study vegetation feedbacks of nutrient addition on carbon sequestration capacity, we investigated vegetation and ecosystem CO2 exchange at Mer Bleue Bog, Canada in plots that had been fertilized with nitrogen (N) or with N plus phosphorus (P) and potassium (K) for 7-12 years. Gross photosynthesis, ecosystem respiration, and net CO2 exchange were measured weekly during May-September 2011 using climate-controlled chambers. A substrate-induced respiration technique was used to determine the functional ability of the microbial community. The highest N and NPK additions were associated with 40% less net CO2 uptake than the control. In the NPK additions, a diminished C sink potential was due to a 20-30% increase in ecosystem respiration, while gross photosynthesis rates did not change as greater vascular plant biomass compensated for the decrease in Sphagnum mosses. In the highest N-only treatment, small reductions in gross photosynthesis and no change in ecosystem respiration led to the reduced C sink. Substrate-induced microbial respiration was significantly higher in all levels of NPK additions compared with control. The temperature sensitivity of respiration in the plots was lower with increasing cumulative N load, suggesting more labile sources of respired CO2 . The weaker C sink potential could be explained by changes in nutrient availability, higher woody : foliar ratio, moss loss, and enhanced decomposition. Stronger responses to NPK fertilization than to N-only fertilization for both shrub biomass production and decomposition suggest that the bog ecosystem is N-P/K colimited rather than N-limited. Negative effects of further N-only deposition were indicated by delayed spring CO2 uptake. In contrast to forests, increased wood formation and surface litter accumulation in bogs seem to reduce the C sink potential owing to the loss of peat-forming Sphagnum.
Assuntos
Dióxido de Carbono/metabolismo , Sequestro de Carbono , Ecossistema , Nitrogênio/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Potássio/metabolismo , Ontário , Estações do Ano , Áreas AlagadasRESUMO
Peatlands are an important source of the atmospheric greenhouse gas methane (CH4). Although CH4 cycling and fluxes have been quantified for many northern peatlands, imprecision in process-based approaches to predicting CH4 emissions suggests that our understanding of underlying processes is incomplete. Microbial anaerobic oxidation of CH4 (AOM) is an important CH4 sink in marine sediments, but AOM has only recently been identified in a few nonmarine systems. We used (13)C isotope tracers and followed the fate of (13)C into CO2 and peat in order to study the geographic extent, relative importance, and biogeochemistry of AOM in 15 North American peatlands spanning a â¼1500 km latitudinal transect that varied in hydrology, vegetation, and soil chemistry. For the first time, we demonstrate that AOM is a widespread and quantitatively important process across many peatland types and that anabolic microbial assimilation of CH4-C occurs. However, AOM rate is not predicted by CH4 production rates and the primary mechanism of C assimilation remains uncertain. AOM rates are higher in fen than bog sites, suggesting electron acceptor constraints on AOM. Nevertheless, AOM rates were not correlated with porewater ion concentrations or stimulated following additions of nitrate, sulfate, or ferric iron, suggesting that an unidentified electron acceptor(s) must drive AOM in peatlands. Globally, we estimate that AOM could consume a large proportion of CH4 produced annually (1.6-49 Tg) and thereby constrain emissions and greenhouse gas forcing.
Assuntos
Isótopos/metabolismo , Metano/metabolismo , Anaerobiose , OxirreduçãoRESUMO
Increasing forest cover by regreening mining and smelting degraded landscapes provides an opportunity for global carbon (C) sequestration, however, the reported effects of regreening on soil C processes are mixed. One of the world's largest regreening programs is in the City of Greater Sudbury, Canada and has been ongoing since 1978. Prior to regreening, soils in the City of Greater Sudbury area were highly eroded, acidic, rich in metals, and poor in nutrients. This study used a chronosequence approach to investigate how forest soil C pools and fluxes have changed with stand age in highly "eroded" sites with minimal soil cover (n = 6) and "stable" sites covered by soil (n = 6). Encouragingly, the relationship between stand age and soil C processes (litterfall, litter decomposition, soil respiration, fine root growth) at both stable and eroded sites were comparable to observations reported for jack pine (Pinus banksiana Lamb.) and red pine (Pinus resinosa Ait.) plantations that have not been subject to over a century of industrial impacts. There was a strong "home-field advantage" for local decomposers, where litter decomposition rates were higher using a site-specific pine litter compared with a common pine litter. Higher soil respiration at eroded sites was linked to higher soil temperature, likely because of a more open tree canopy. Forest floor C pools increased with stand age while mineral soil C and aggregate C concentrations decreased with stand age. This loss of soil C is small relative to the substantial increases in aboveground tree and forest floor C pools, leading to a sizeable increase in total ecosystem C pools following regreening.
Assuntos
Ecossistema , Pinus , Solo , Carbono/metabolismo , Florestas , Árvores/metabolismo , Pinus/metabolismoRESUMO
Mine tailings are prevalent worldwide and can adversely impact adjacent ecosystems, including wetlands. This study investigated the impact of gold (Au) mine tailings contamination on peatland soil and pore water geochemistry, vegetation and microbial communities, and microbial carbon (C) cycling. Maximum arsenic (As) concentrations in peat and pore water reached 20,137 mg kg-1 and 16,730 µg L-1, respectively, but decreased by two orders of magnitude along a 128 m gradient extending from the tailings into the wetland. Carbon and other macronutrient (N, P, K) concentrations in peat and pore water significantly increased with distance from contamination. Relative percent cover and species richness of vascular and non-vascular plants significantly increased with distance into the wetland, with higher non-vascular richness being found at intermediate distances before transitioning to a vascular plant dominated community. Bacterial and archaeal community composition exhibited a decreased proportion of members of the phylum Acidobacteria (notably of the order Acidobacteriales) and increased diversity and richness of methanogens across a larger range of orders farther from the tailings source, an indication of microbial C-cycling potential. Consistent with changes in microbial communities, in vitro microbial CH4 production potential significantly increased with distance from the contaminant source. This study demonstrates both the profound negative impact that metalliferous tailings contamination can have on above and belowground communities in peatlands, and the value of wetland preservation and restoration.
Assuntos
Arsênio , Microbiota , Áreas Alagadas , Solo/química , Água , CarbonoRESUMO
The active methanotroph community was investigated in two contrasting North American peatlands, a nutrient-rich sedge fen and nutrient-poor Sphagnum bog using in vitro incubations and (13)C-DNA stable-isotope probing (SIP) to measure methane (CH(4)) oxidation rates and label active microbes followed by fingerprinting and sequencing of bacterial and archaeal 16S rDNA and methane monooxygenase (pmoA and mmoX) genes. Rates of CH(4) oxidation were slightly, but significantly, faster in the bog and methanotrophs belonged to the class Alphaproteobacteria and were similar to other methanotrophs of the genera Methylocystis, Methylosinus, and Methylocapsa or Methylocella detected in, or isolated from, European bogs. The fen had a greater phylogenetic diversity of organisms that had assimilated (13)C, including methanotrophs from both the Alpha- and Gammaproteobacteria classes and other potentially non-methanotrophic organisms that were similar to bacteria detected in a UK and Finnish fen. Based on similarities between bacteria in our sites and those in Europe, including Russia, we conclude that site physicochemical characteristics rather than biogeography controlled the phylogenetic diversity of active methanotrophs and that differences in phylogenetic diversity between the bog and fen did not relate to measured CH(4) oxidation rates. A single crenarchaeon in the bog site appeared to be assimilating (13)C in 16S rDNA; however, its phylogenetic similarity to other CO(2)-utilizing archaea probably indicates that this organism is not directly involved in CH(4) oxidation in peat.
Assuntos
Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Metano/metabolismo , Microbiologia do Solo , Solo/química , Alphaproteobacteria/isolamento & purificação , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , DNA Bacteriano/análise , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Ecossistema , Gammaproteobacteria/isolamento & purificação , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , New York , Oxirredução , Oxigenases/análise , Oxigenases/genética , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Áreas AlagadasRESUMO
Sludges from pulp and paper mills represent a major ecological and environmental cost, and anaerobic digestion represents a method of waste reduction and energy recovery for these mills. This study compared methane production potential and microbial communities across 11 primary- and biosludges from five pulp and paper mills using various mill processes. We measured methane production from sludges in anaerobic batch reactor experiments over 64 days. Sludges were incubated with and without added substrate to test for organic substrate limitation versus inhibition of methanogens. Initial microbial communities and changes to community composition were determined using Illumina MiSeq for metabarcoding of bacterial and archaeal 16S rRNA genes. Mean methane production potential varied greatly between sludges (0.002-79 mL CH4 g-1 TS). Among primary sludges, kraft mill sludge produced more methane than other mill types. For these other mills, biosludge produced more methane than primary sludge, which had evidence of methanogen inhibition. Microbial communities and diversity were influenced by the initial community composition, and high methane production was only seen in sludges with high diversity. A number of sludges innately produced substantial methane and may be targets for further modelling and larger scale testing of anaerobic digestion.
Assuntos
Microbiota , Esgotos , Anaerobiose , Reatores Biológicos/microbiologia , Metano , Microbiota/genética , RNA Ribossômico 16S/genética , Esgotos/microbiologiaRESUMO
The cost of microalgae cultivation is one of the largest limitations to achieving sustainable, large-scale microalgae production of commercially desirable lipids. Utilizing CO2 as a 'free' carbon source from waste industrial flue gas emissions can offer wide-ranging cost savings. However, these gas streams typically create acidic environments, in which most microalgae cannot survive due to the concentration of CO2 and the presence of other acidic gasses such as NO2 and SO2. To address this situation, we investigated growth of a mixed acid-tolerant green microalgal culture (91% dominated by a single Coccomyxa sp. taxon) bioprospected at pH 2.8 from an acid mine drainage impacted water body. The culture was grown at pH 2.5 and fed with a simulated flue gas containing 6% CO2 and 94% N2. On reaching the end of the exponential growth phase, the culture was exposed to either continued light-dark cycle conditions or continual dark conditions. After three days in the dark, the biomass consisted of 28% of lipids, which was 42% higher than at the end of the exponential phase and 55% higher than the maximum lipid content achieved under light/dark conditions. The stress caused by being continually in the dark also favoured the production of omega-3 and omega-6 polyunsaturated fatty acids (PUFAs; 19.47% and 21.04%, respectively, after 7 days) compared to 7-days of light-dark treatment (1.94% and 9.53%, respectively) and showed an increase in nitrogen content (C:N ratio of 6.4) compared to light-dark treatment (C:N ratio of 11.9). The results of the research indicate that use of acid tolerant microalgae overcomes issues using flue gasses that will create an acidic environment and that applying dark stress is a low-cost stressor stimulates production of desirable dietary lipids.
Assuntos
Microalgas , Biocombustíveis , Biomassa , Dióxido de Carbono/química , Gases/química , LipídeosRESUMO
There is interest in utilizing wood ash as an amendment in forestry operations as a mechanism to return nutrients to soils that are removed during harvesting, with the added benefit of diverting this bioenergy waste material from landfill sites. Existing studies have not arrived at a consensus on what the effects of wood ash amendments are on soil biota. We collected forest soil samples from studies in managed forests across Canada that were amended with wood ash to evaluate the effects on arthropod, bacterial and fungal communities using metabarcoding of F230, 16S, 18S and ITS2 sequences as well as enzyme analyses to assess its effects on soil biotic function. Ash amendment did not result in consistent effects across sites, and those effects that were detected were small. Overall, this study suggests that ash amendment applied to managed forest systems in amounts (up to 20 Mg ha-1) applied across the 8 study sties had little to no detectable effects on soil biotic community structure or function. When effects were detected, they were small, and site-specific. These non-results support the application of wood ash to harvested forest sites to replace macronutrients (e.g., calcium) removed by logging operations, thereby diverting it from landfill sites, and potentially increasing stand productivity.
Assuntos
Poluentes do Solo , Solo , Biota , Agricultura Florestal , Florestas , Solo/química , Poluentes do Solo/análiseRESUMO
Peatlands account for 15 to 30% of the world's soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10-20 cm layer, were 440 ± 85.1 g kg-1 and 13.9 ± 7.4 g kg-1, with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446-532 g kg-1) and lowest in intermediate and extremely rich fens (375-414 g kg-1). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks.
Assuntos
Carbono , Solo , Carbono/química , Solo/química , Áreas Alagadas , NitrogênioRESUMO
Application of stable soil amendments is often the key to successful phytostabilization and rehabilitation of mine tailings, and microbial guilds are primary drivers of many geochemical processes promoted by these amendments. Field studies were set up at a tailings management area near Sudbury, Ontario to examine performance of blends of lime stabilized municipal biosolids and compost at nine different rates over thick (1â¯m) municipal compost covers planted with agricultural crops. Based on biogeochemical variability of the substrates four and ten years after application of the initial compost cover, the experimental plots could be classified into three categories: "Low" rate (0-100â¯tâ¯ha-1 biosolids), "Medium" rate (200-800â¯tâ¯ha-1), and "High" rate (1600-3200â¯tâ¯ha-1) treatments. The addition of biosolids materials to the thick compost cover at rates higher than 100â¯tâ¯ha-1 significantly reduced C:N ratio of the substrates, available phosphorus, and some of the nutrient cations, while notably increasing inorganic carbon and the potential solubility of Ni and Cu. This suggests that increasing biosolids application rates may not equivalently ameliorate soil quality and geochemical stability. Correspondingly, microbial communities were altered by biosolids additions, further intensifying the negative impacts of biosolids on long-term efficiency of the initial compost cover. Abundance of cellulose, hemicellulose, and lignocellulose decomposers (as key drivers of mineralization and humification) was significantly reduced by "Medium" and "High" rate treatments. Most DNA sequences with high affinity to denitrifiers were detected in "High" rate treatments where geochemical conditions were optimal for higher microbial denitrification activities. These findings have implications for improving the long-term efficiency of reclamation and environmental management programs in mine tailings of northern temperate climates.
Assuntos
Compostagem , Microbiota , Poluentes do Solo , Biossólidos , Ontário , Solo , Poluentes do Solo/análiseRESUMO
Peat accumulation in high latitude wetlands represents a natural long-term carbon sink, resulting from the cumulative excess of growing season net ecosystem production over non-growing season (NGS) net mineralization in soils. With high latitudes experiencing warming at a faster pace than the global average, especially during the NGS, a major concern is that enhanced mineralization of soil organic carbon will steadily increase CO2 emissions from northern peatlands. In this study, we conducted laboratory incubations with soils from boreal and temperate peatlands across Canada. Peat soils were pretreated for different soil moisture levels, and CO2 production rates were measured at 12 sequential temperatures, covering a range from - 10 to + 35 °C including one freeze-thaw event. On average, the CO2 production rates in the boreal peat samples increased more sharply with temperature than in the temperate peat samples. For same temperature, optimum soil moisture levels for CO2 production were higher in the peat samples from more flooded sites. However, standard reaction kinetics (e.g., Q10 temperature coefficient and Arrhenius equation) failed to account for the apparent lack of temperature dependence of CO2 production rates measured below 0 °C, and a sudden increase after a freezing event. Thus, we caution against using the simple kinetic expressions to represent the CO2 emissions from northern peatlands, especially regarding the long NGS period with multiple soil freeze and thaw events.