Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 146(13): 134102, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28390363

RESUMO

Vibrational spectroscopy is a fundamental tool to investigate local atomic arrangements and the effect of the environment, provided that the spectral features can be correctly assigned. This can be challenging in experiments and simulations when double peaks are present because they can have different origins. Fermi dyads are a common class of such doublets, stemming from the resonance of the fundamental excitation of a mode with the overtone of another. We present a new, efficient approach to unambiguously characterize Fermi resonances in density functional theory (DFT) based simulations of condensed phase systems. With it, the spectral features can be assigned and the two resonating modes identified. We also show how data from DFT simulations employing classical nuclear dynamics can be post-processed and combined with a perturbative quantum treatment at a finite temperature to include analytically thermal quantum nuclear effects. The inclusion of these effects is crucial to correct some of the qualitative failures of the Newtonian dynamics simulations at a low temperature such as, in particular, the behavior of the frequency splitting of the Fermi dyad. We show, by comparing with experimental data for the paradigmatic case of supercritical CO2, that these thermal quantum effects can be substantial even at ambient conditions and that our scheme provides an accurate and computationally convenient approach to account for them.

2.
Phys Chem Chem Phys ; 15(30): 12591-601, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23783066

RESUMO

Langevin dynamics coupled to a quantum thermal bath (QTB) allows for the inclusion of vibrational quantum effects in molecular dynamics simulations at virtually no additional computer cost. We investigate here the ability of the QTB method to reproduce the quantum Wigner distribution of a variety of model potentials, designed to assess the performances and limits of the method. We further compute the infrared spectrum of a multidimensional model of proton transfer in the gas phase and in solution, using classical trajectories sampled initially from the Wigner distribution. It is shown that for this type of system involving large anharmonicities and strong nonlinear coupling to the environment, the quantum thermal bath is able to sample the Wigner distribution satisfactorily and to account for both zero point energy and tunneling effects. It leads to quantum time correlation functions having the correct short-time behavior, and the correct associated spectral frequencies, but that are slightly too overdamped. This is attributed to the classical propagation approximation rather than the generation of the quantized initial conditions themselves.

3.
J Phys Chem A ; 117(19): 3954-9, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23581979

RESUMO

The dynamical response of a molecular system to a macropulse typically produced by a free-electron laser is theoretically modeled over experimentally long times, within a realistic kinetic Monte Carlo framework that incorporates absorption, stimulated emission, spontaneous emission, and dissociation events. The simulation relies on an anharmonic potential energy surface obtained from quantum chemistry calculations. Application to cationic naphthalene yields a better agreement with measurements than the anharmonic linear absorption spectrum, thus emphasizing the importance of specific dynamical effects on the spectral properties.

4.
Phys Chem Chem Phys ; 14(7): 2381-90, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22249945

RESUMO

Classical molecular dynamics is a convenient method for computing anharmonic infrared spectra of polyatomic molecules and condensed phase systems. However it does not perform well for predicting accurate intensities and it lacks nuclear quantization, two deficiencies that are usually accounted for by empirical scaling factors. In this paper we show on the examples of the trans isomer of nitrous acid and naphthalene that both issues can be alleviated by preparing the initial conditions according to semiclassical quantization based on a normal mode representation. The method correctly reproduces fundamental frequencies obtained with quantum mechanical methods. At increasing temperatures, the effective frequencies are found to follow the same trends as path-integral based methods. In the low-temperature limit, the band intensities predicted by the method are also found to agree with quantum mechanical considerations.


Assuntos
Simulação de Dinâmica Molecular , Isomerismo , Naftalenos/química , Ácido Nitroso/química , Teoria Quântica , Espectrofotometria Infravermelho , Temperatura
5.
J Phys Chem B ; 118(22): 5873-81, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24754506

RESUMO

In the present paper, we provide an extended study of the vibrational signature of a butenolide carotenoid, peridinin, in various solvents by combining resonance Raman spectroscopy (RRS) with theoretical calculations. The presence of a Fermi resonance due to coupling between the lactonic C═O stretching and the overtone of the wagging of the C-H in the lactonic ring provides a spectroscopic way of differentiating between peridinins lying in different environments. This is a significant achievement, given that simultaneous presence of several peridinins (each with a peculiar photophysical role) in different environments occurs in the most important peridinin containing proteins, the peridinin-chlorophyll proteins (PCPs) and the Chl a-c2-peridinin binding proteins. In RRS, small modifications of solvent polarity can give rise to large differences in the intensity and splitting between the two bands, resulting from the Fermi resonance. By changing the polarity, we can tune the frequency of stretching of the C═O and, while the C-H wagging frequency is almost always constant in different solvents, move the system from a perfect resonance condition to off-resonance ones. We have corroborated our spectroscopic findings with a quasi-classical dynamical model of two coupled oscillators, and DFT calculations on peridinin in different solvents; we have also used calculations to complete the peridinin vibrational mode assignments in the 800-1600 cm(-1) region of RRS spectra, corresponding to polyene chain motion. Finally, the presence of Fermi resonance has been used to reinterpret previous vibrational spectroscopic experiments in PCPs.


Assuntos
Carotenoides/química , Dinoflagellida/química , Análise Espectral Raman/métodos , Carotenoides/isolamento & purificação , Teoria Quântica , Solventes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa