Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Chem Res Toxicol ; 37(2): 419-428, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38314730

RESUMO

Photolysis of DNA attached to gold nanoparticles (AuNPs) with ultraviolet (UV) photons induces DNA damage. The release of nucleobases (Cyt, Gua, Ade, and Thy) from DNA was the major reaction (99%) with an approximately equal release of pyrimidines and purines. This reaction contributes to the formation of abasic sites in DNA. In addition, liquid chromatography-mass spectrometry/MS (LC-MS/MS) analysis revealed the formation of reduction products of pyrimidines (5,6-dihydrothymidine and 5,6-dihydro-2'-deoxyuridine) and eight 2',3'- and 2',5'-dideoxynucleosides. In contrast, there was no evidence of the formation of 5-hydroxymethyluracil and 8-oxo-7,8-dihydroguanine, which are common oxidation products of thymine and guanine, respectively. Using appropriate filters, the main photochemical reactions were found to involve photoelectrons ejected from AuNPs by UV photons. The contribution of "hot" conduction band electrons with energies below the photoemission threshold was minor. The mechanism for the release of free nucleobases by photoelectrons is proposed to take place by the initial formation of transient molecular anions of the nucleobases, followed by dissociative electron attachment at the C1'-N glycosidic bond connecting the nucleobase to the sugar-phosphate backbone. This mechanism is consistent with the reactivity of secondary electrons ejected by X-ray irradiation of AuNPs attached to DNA, as well as the reactions of various nucleic acid derivatives irradiated with monoenergetic very-low-energy electrons (∼2 eV). These studies should help us to understand the chemistry of nanoparticles that are exposed to UV light and that are used as scaffolds and catalysts in molecular biology, curative agents in photodynamic therapy, and components of sunscreens and cosmetics.


Assuntos
Ouro , Nanopartículas Metálicas , Elétrons , Cromatografia Líquida , Fotólise , Espectrometria de Massas em Tandem , DNA/química , Pirimidinas/química , Dano ao DNA
2.
Horm Behav ; 161: 105507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479349

RESUMO

An amalgam of investigations at the interface of neuroethology and behavioral neuroendocrinology first established the most basic behavioral, neuroanatomical, and neurophysiological characters of vocal-acoustic communication morphs in the plainfin midshipman fish, Porichthys notatus Girard. This foundation has led, in turn, to the repeated demonstration that neuro-behavioral mechanisms driving reproductive-related, vocal-acoustic behaviors can be uncoupled from gonadal state for two adult male phenotypes that follow alternative reproductive tactics (ARTs).


Assuntos
Batracoidiformes , Comportamento Sexual Animal , Vocalização Animal , Animais , Masculino , Comportamento Sexual Animal/fisiologia , Batracoidiformes/fisiologia , Vocalização Animal/fisiologia , Reprodução/fisiologia , Feminino
3.
Nat Methods ; 17(6): 605-608, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32341543

RESUMO

Behaviors emerge from activity throughout the brain, but noninvasive optical access in adult vertebrate brains is limited. We show that three-photon (3P) imaging through the head of intact adult zebrafish allows structural and functional imaging at cellular resolution throughout the telencephalon and deep into the cerebellum and optic tectum. With 3P imaging, considerable portions of the brain become noninvasively accessible from embryo to sexually mature adult in a vertebrate model.


Assuntos
Cerebelo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Fótons , Colículos Superiores/diagnóstico por imagem , Telencéfalo/diagnóstico por imagem , Peixe-Zebra/anatomia & histologia , Animais
4.
Phys Chem Chem Phys ; 25(44): 30412-30418, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37916504

RESUMO

We investigate the mechanism of damage to the carbonate ester chemical functions in Poly allyl diglycol carbonate (PADC) induced by low-energy electrons (LEEs) of <50 eV, which are major components of the initial secondary products of ionizing radiation. PADC is the world's most widely used polymeric nuclear track detector (PNTD) for swift ion detection. Using diethylene glycol monoethyl ether acetate as a surrogate for PADC, we have measured for irradiation with low-energy electrons (LEEs) of <50 eV, the electron stimulated desorption (ESD) signal of O- from 3-monolayer thick films of DGMEA by time-of-flight mass spectrometry. We find that for electron irradiation at energies >6-9 eV, the instantaneous ESD yield of O- increases with the cumulative number of incident electrons (i.e., fluence), indicating that the additional O- signal derives from an electron-induced DGMEA product. From comparison with ESD measurements from films of acetic acid and acetaldehyde, we identify that the additional desorbed O- signal derives from oxygen atoms originally adjacent to the carbonyl bond in DGMEA. Since LEEs are the predominant secondary particles produced by ionizing radiation, this finding helps to better understand the mechanism of damage to carbonate ester in PADC, which is a key step for latent track formation in PADC.

5.
J Acoust Soc Am ; 154(5): 3466-3478, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019096

RESUMO

The relationship between sound complexity and the underlying morphology and physiology of the vocal organ anatomy is a fundamental component in the evolution of acoustic communication, particularly for fishes. Among vertebrates, the mammalian larynx and avian syrinx are the best-studied vocal organs, and their ability to produce complex vocalizations has been modeled. The range and complexity of the sounds in mammalian lineages have been attributed, in part, to the bilateral nature of the vocal anatomy. Similarly, we hypothesize that the bipartite swim bladder of some species of toadfish (family Batrachoididae) is responsible for complex nonlinear characters of the multiple call types that they can produce, supported by nerve transection experiments. Here, we develop a low-dimensional coupled-oscillator model of the mechanics underlying sound production by the two halves of the swim bladder of the three-spined toadfish, Batrachomoeus trispinosus. Our model was able to replicate the nonlinear structure of both courtship and agonistic sounds. The results provide essential support for the hypothesis that fishes and tetrapods have converged in an evolutionary innovation for complex acoustic signaling, namely, a relatively simple bipartite mechanism dependent on sonic muscles contracting around a gas filled structure.


Assuntos
Batracoidiformes , Bexiga Urinária , Animais , Fenômenos Biomecânicos , Som , Acústica , Mamíferos
6.
Bioinformatics ; 37(3): 367-374, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32818252

RESUMO

MOTIVATION: Analysis of biological data often involves the simultaneous testing of thousands of genes. This requires two key steps: the ranking of genes and the selection of important genes based on a significance threshold. One such testing procedure, called the optimal discovery procedure (ODP), leverages information across different tests to provide an optimal ranking of genes. This approach can lead to substantial improvements in statistical power compared to other methods. However, current applications of the ODP have only been established for simple study designs using microarray technology. Here, we extend this work to the analysis of complex study designs and RNA-sequencing studies. RESULTS: We apply our extended framework to a static RNA-sequencing study, a longitudinal study, an independent sampling time-series study,and an independent sampling dose-response study. Our method shows improved performance compared to other testing procedures, finding more differentially expressed genes and increasing power for enrichment analysis. Thus, the extended ODP enables a favorable significance analysis of genome-wide gene expression studies. AVAILABILITY AND IMPLEMENTATION: The algorithm is implemented in our freely available R package called edge and can be downloaded at https://www.bioconductor.org/packages/release/bioc/html/edge.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Expressão Gênica , Estudos Longitudinais , Análise de Sequência de RNA
7.
J Exp Biol ; 225(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258623

RESUMO

Anthropogenic noise can be hazardous for the auditory system and wellbeing of animals, including humans. However, very limited information is known on how this global environmental pollutant affects auditory function and inner ear sensory receptors in early ontogeny. The zebrafish (Danio rerio) is a valuable model in hearing research, including investigations of developmental processes of the vertebrate inner ear. We tested the effects of chronic exposure to white noise in larval zebrafish on inner ear saccular sensitivity and morphology at 3 and 5 days post-fertilization (dpf), as well as on auditory-evoked swimming responses using the prepulse inhibition (PPI) paradigm at 5 dpf. Noise-exposed larvae showed a significant increase in microphonic potential thresholds at low frequencies, 100 and 200 Hz, while the PPI revealed a hypersensitization effect and a similar threshold shift at 200 Hz. Auditory sensitivity changes were accompanied by a decrease in saccular hair cell number and epithelium area. In aggregate, the results reveal noise-induced effects on inner ear structure-function in a larval fish paralleled by a decrease in auditory-evoked sensorimotor responses. More broadly, this study highlights the importance of investigating the impact of environmental noise on early development of sensory and behavioural responsiveness to acoustic stimuli.


Assuntos
Orelha Interna , Perda Auditiva Provocada por Ruído , Animais , Limiar Auditivo/fisiologia , Células Ciliadas Auditivas/fisiologia , Larva/fisiologia , Peixe-Zebra/fisiologia
8.
J Exp Biol ; 225(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35916179

RESUMO

Acoustic behavior is widespread across vertebrates, including fishes. We report robust acoustic displays during aggressive interactions for a laboratory colony of Danionella dracula, a miniature and transparent species of teleost fish closely related to zebrafish (Danio rerio), which are hypothesized to be sonic based on the presence of a hypertrophied muscle associated with the male swim bladder. Males produce bursts of pulsatile sounds and a distinct postural display - extension of a hypertrophied lower jaw, a morphological trait not present in other Danionella species - during aggressive but not courtship interactions. Females show no evidence of sound production or jaw extension in such contexts. Novel pairs of size-matched or -mismatched males were combined in resident-intruder assays where sound production and jaw extension could be linked to individuals. In both dyad contexts, resident males produced significantly more sound pulses than intruders. During heightened sonic activity, the majority of the highest sound producers also showed increased jaw extension. Residents extended their jaw more than intruders in size-matched but not -mismatched contexts. Larger males in size-mismatched dyads produced more sounds and jaw extensions compared with their smaller counterparts, and sounds and jaw extensions increased with increasing absolute body size. These studies establish D. dracula as a sonic species that modulates putatively acoustic and postural displays during aggressive interactions based on residency and body size, providing a foundation for further investigating the role of multimodal displays in a new model clade for neurogenomic and neuroimaging studies of aggression, courtship and other social interactions.


Assuntos
Acústica , Peixe-Zebra , Sacos Aéreos/fisiologia , Animais , Corte , Feminino , Masculino , Som
9.
J Neurosci ; 40(7): 1549-1559, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31911461

RESUMO

Understanding the contribution of neuropeptide-containing neurons to variation in social behavior remains critically important. Galanin has gained increased attention because of the demonstration that galanin neurons in the preoptic area (POA) promote mating and parental care in mammals. How widespread these mechanisms are among vertebrates essentially remains unexplored, especially among teleost fishes, which comprise nearly one-half of living vertebrate species. Teleosts with alternative reproductive tactics exhibit stereotyped patterns of social behavior that diverge widely between individuals within a sex. This includes midshipman that have two male morphs. Type I males mate using either acoustic courtship to attract females to enter a nest they guard or cuckoldry during which they steal fertilizations from a nest-holding male using a sneak or satellite spawning tactic, whereas type II males only cuckold. Using the neural activity marker phospho-S6, we show increased galanin neuron activation in courting type I males during mating that is not explained by their courtship vocalizations, parental care of eggs, or nest defense against cuckolders. This increase is not observed during mating in cuckolders of either morph or females (none of which show parental care). Together with their role in mating in male mammals, the results demonstrate an unexpectedly specific and deep-rooted, phylogenetically shared behavioral function for POA galanin neurons. The results also point to galanin-dependent circuitry as a potential substrate for the evolution of divergent phenotypes within one sex and provide new functional insights into how POA populations in teleosts compare to the POA and anterior hypothalamus of tetrapods.SIGNIFICANCE STATEMENT Studies of neuropeptide regulation of vertebrate social behavior have mainly focused on the vasopressin-oxytocin family. Recently, galanin has received attention as a regulator of social behavior largely because of studies demonstrating that galanin neurons in the preoptic area (POA) promote mating and parental care in mammals. Species with alternative reproductive tactics (ARTs) exhibit robust, consistent differences in behavioral phenotypes between individuals within a sex. Taking advantage of this trait, we show POA galanin neurons are specifically active during mating in one of two male reproductive tactics, but not other mating-related behaviors in a fish with ARTs. The results demonstrate a deep, phylogenetically shared role for POA galanin neurons in reproductive-related social behaviors with implications for the evolution of ARTs.


Assuntos
Batracoidiformes/fisiologia , Galanina/fisiologia , Neurônios/fisiologia , Área Pré-Óptica/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Batracoidiformes/anatomia & histologia , Corte , Feminino , Masculino , Mamíferos/fisiologia , Comportamento de Nidação/fisiologia , Fenótipo , Área Pré-Óptica/citologia , Especificidade da Espécie , Territorialidade , Vocalização Animal/fisiologia
10.
J Chem Phys ; 154(22): 224706, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241211

RESUMO

We have employed electron stimulated desorption (ESD) and x-ray photoelectron spectroscopy (XPS) to study the chemical species generated from multilayer films of N2O, C2D2, and mixtures thereof (i.e., N2O/C2D2) by the impact of low energy electrons with energies between 30 and 70 eV. Our ESD results for pure films of N2O show the production of numerous fragment cations and anions, and of larger molecular ions, of sufficient kinetic energy to escape into vacuum, which are likely formed by ion-molecule scattering in the film. Ion-molecule scattering is also responsible for the production of cations from C2D2 films that contain as many as six or seven carbon atoms. Many of the same anions and cations desorb from N2O/C2D2 mixtures, as well as new species, which is the result of ion-molecule scattering in the film. Anion desorption signals further indicate the formation of C-N containing species within the irradiated films. XPS spectra of N1s, C1s, and O1s lines reveal the fragmentation of N-O bonds and gradual formation of molecules containing species containing O-C=O, C=O, and C-O functional groups. A comparison between ESD and XPS findings suggests that species observed in the ESD channel are primarily products of reactions taking place at the film-vacuum interface, while those observed in the XPS derive from reactions occurring within the solid.

11.
J Sports Sci ; 38(1): 94-99, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31648607

RESUMO

Previous research has demonstrated that providing learners with self-control over some aspect of practice enhances motor learning (for a review see Wulf, 2007). One explanation for the self-control effect is that learners engage in deeper information processing when they are allowed to make choices during practice. Recent research has supported this line of thinking by showing that the self-control effect was eliminated for learners who engaged in a cognitive load task during the interval following completion of discrete task trials (Carter & Ste-Marie, 2017). The current study tested the effects of imposing a cognitive load task during the completion of continuous task trials. Participants (N = 48) were divided into self-control (SC), self-control with load (SCL), and two corresponding yoked (YK, YKL) groups. Participants learned a continuous tracing task and then performed 24-hour retention and transfer tests. Retention and transfer test movement times were significantly faster for SC compared to YK participants within the No Load condition but did not differ between these participants within the Load condition. Errors were similar among all groups in retention and transfer. These results provide support for the importance of information processing in regards to the self-controlled learning benefit.


Assuntos
Cognição , Conhecimento Psicológico de Resultados , Prática Psicológica , Autocontrole , Adolescente , Adulto , Retroalimentação , Humanos , Movimento , Retenção Psicológica , Análise e Desempenho de Tarefas , Transferência de Experiência , Adulto Jovem
12.
J Exp Biol ; 222(Pt 8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988051

RESUMO

We propose that insights from the field of evolutionary developmental biology (or 'evo-devo') provide a framework for an integrated understanding of the origins of behavioural diversity and its underlying mechanisms. Towards that goal, in this Commentary, we frame key questions in behavioural evolution in terms of molecular, cellular and network-level properties with a focus on the nervous system. In this way, we highlight how mechanistic properties central to evo-devo analyses - such as weak linkage, versatility, exploratory mechanisms, criticality, degeneracy, redundancy and modularity - affect neural circuit function and hence the range of behavioural variation that can be filtered by selection. We outline why comparative studies of molecular and neural systems throughout ontogeny will provide novel insights into diversity in neural circuits and behaviour.


Assuntos
Comportamento Animal/fisiologia , Evolução Biológica , Animais , Biologia do Desenvolvimento
13.
Proc Biol Sci ; 285(1871)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29343607

RESUMO

Reproductive success relies on the coordination of social behaviours, such as territory defence, courtship and mating. Species with extreme variation in reproductive tactics are useful models for identifying the neural mechanisms underlying social behaviour plasticity. The plainfin midshipman (Porichthys notatus) is a teleost fish with two male reproductive morphs that follow widely divergent developmental trajectories and display alternative reproductive tactics (ARTs). Type I males defend territories, court females and provide paternal care, but will resort to cuckoldry if they cannot maintain a territory. Type II males reproduce only through cuckoldry. We sought to disentangle gene expression patterns underlying behavioural tactic, in this case ARTs, from those solely reflective of developmental morph. Using RNA-sequencing, we investigated differential transcript expression in the preoptic area-anterior hypothalamus (POA-AH) of courting type I males, cuckolding type I males and cuckolding type II males. Unexpectedly, POA-AH differential expression was more strongly coupled to behavioural tactic than morph. This included a suite of transcripts implicated in hormonal regulation of vertebrate social behaviour. Our results reveal that divergent expression patterns in a conserved neuroendocrine centre known to regulate social-reproductive behaviours across vertebrate lineages may be uncoupled from developmental history to enable plasticity in the performance of reproductive tactics.


Assuntos
Batracoidiformes/fisiologia , Expressão Gênica , Hipotálamo/metabolismo , Comportamento Sexual Animal , Transcriptoma , Animais , Batracoidiformes/genética , Corte , Proteínas de Peixes/metabolismo , Masculino , Comportamento Social
14.
Brain Behav Evol ; 91(2): 82-96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29672280

RESUMO

Motivated by studies of speech deficits in humans, several studies over the past two decades have investigated the potential role of a forkhead domain transcription factor, FoxP2, in the central control of acoustic signaling/vocalization among vertebrates. Comparative neuroanatomical studies that mainly include mammalian and avian species have mapped the distribution of FoxP2 expression in multiple brain regions that imply a greater functional significance beyond vocalization that might be shared broadly across vertebrate lineages. To date, reports for teleost fish have been limited in number and scope to nonvocal species. Here, we map the neuroanatomical distribution of FoxP2 mRNA expression in a highly vocal teleost, the plainfin midshipman (Porichthys notatus). We report an extensive overlap between FoxP2 expression and vocal, auditory, and steroid-signaling systems with robust expression at multiple sites in the telencephalon, the preoptic area, the diencephalon, and the midbrain. Label was far more restricted in the hindbrain though robust in one region of the reticular formation. A comparison with other teleosts and tetrapods suggests an evolutionarily conserved FoxP2 phenotype important to vocal-acoustic and, more broadly, sensorimotor function among vertebrates.


Assuntos
Anfíbios/metabolismo , Encéfalo/metabolismo , Peixes/metabolismo , Fatores de Transcrição Forkhead/biossíntese , Mamíferos/metabolismo , Répteis/metabolismo , Vocalização Animal , Animais , Evolução Biológica , Feminino , Masculino
15.
J Chem Phys ; 148(16): 164702, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29716196

RESUMO

Glycine (Gly), the simplest amino-acid building-block of proteins, has been identified on icy dust grains in the interstellar medium, icy comets, and ice covered meteorites. These astrophysical ices contain simple molecules (e.g., CO2, H2O, CH4, HCN, and NH3) and are exposed to complex radiation fields, e.g., UV, γ, or X-rays, stellar/solar wind particles, or cosmic rays. While much current effort is focused on understanding the radiochemistry induced in these ices by high energy radiation, the effects of the abundant secondary low energy electrons (LEEs) it produces have been mostly assumed rather than studied. Here we present the results for the exposure of multilayer CO2:CH4:NH3 ice mixtures to 0-70 eV electrons under simulated astrophysical conditions. Mass selected temperature programmed desorption (TPD) of our electron irradiated films reveals multiple products, most notably intact glycine, which is supported by control measurements of both irradiated or un-irradiated binary mixture films, and un-irradiated CO2:CH4:NH3 ices spiked with Gly. The threshold of Gly formation by LEEs is near 9 eV, while the TPD analysis of Gly film growth allows us to determine the "quantum" yield for 70 eV electrons to be about 0.004 Gly per incident electron. Our results show that simple amino acids can be formed directly from simple molecular ingredients, none of which possess preformed C-C or C-N bonds, by the copious secondary LEEs that are generated by ionizing radiation in astrophysical ices.

16.
J Chem Phys ; 147(22): 224704, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29246047

RESUMO

It has been proposed that organic molecules required for life on earth may be formed by the radiation processing of molecular ices in space environments, e.g., within our solar system. Such processes can be studied in the laboratory with surface science analytical techniques and by using low-energy electron (LEE) irradiation to simulate the effects of the secondary electrons that are generated in great abundance whenever ionizing radiation interacts with matter. Here we present new measurements of 70 eV LEE irradiation of multilayer films of CH4, 18O2, and CH4/18O2 mixtures (3:1 ratio) at 22 K. The electron stimulated desorption (ESD) yields of cations and anions have been recorded as a function of electron fluence. At low fluence, the prompt desorption of more massive multi-carbon or C-O containing cationic fragments agrees with our earlier measurements. However, new anion ESD signals of C2-, C2H-, and C2H2- from CH4/18O2 mixtures increase with fluence, indicating the gradual synthesis (and subsequent electron-induced fragmentation) of new, more complex species containing several C and possibly O atoms. Comparisons between the temperature programed desorption (TPD) mass spectra of irradiated and unirradiated films show the electron-induced formation of new chemical species, the identities of which are confirmed by reference to the NIST database of electron impact mass spectra and by TPD measurements of films composed of the proposed products. New species observed in the TPD of irradiated mixture films include C3H6, C2H5OH, and C2H6. Furthermore, X-ray photoelectron spectroscopy of irradiated films confirms the formation of C-O, C=O, and O=C-O- bonds of newly formed molecules. Our experiments support the view that secondary LEEs produced by ionizing radiation drive the chemistry in irradiated ices in space, irrespective of the radiation type.

17.
Front Neuroendocrinol ; 37: 129-45, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25168757

RESUMO

Seasonal changes in reproductive-related vocal behavior are widespread among fishes. This review highlights recent studies of the vocal plainfin midshipman fish, Porichthys notatus, a neuroethological model system used for the past two decades to explore neural and endocrine mechanisms of vocal-acoustic social behaviors shared with tetrapods. Integrative approaches combining behavior, neurophysiology, neuropharmacology, neuroanatomy, and gene expression methodologies have taken advantage of simple, stereotyped and easily quantifiable behaviors controlled by discrete neural networks in this model system to enable discoveries such as the first demonstration of adaptive seasonal plasticity in the auditory periphery of a vertebrate as well as rapid steroid and neuropeptide effects on vocal physiology and behavior. This simple model system has now revealed cellular and molecular mechanisms underlying seasonal and steroid-driven auditory and vocal plasticity in the vertebrate brain.


Assuntos
Peixes/fisiologia , Audição/fisiologia , Plasticidade Neuronal/fisiologia , Sistemas Neurossecretores/fisiologia , Estações do Ano , Vocalização Animal/fisiologia , Animais , Comportamento Animal/fisiologia , Hormônios/fisiologia , Sistemas Neurossecretores/metabolismo
18.
BMC Genomics ; 16: 782, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26466782

RESUMO

BACKGROUND: Successful animal communication depends on a receiver's ability to detect a sender's signal. Exemplars of adaptive sender-receiver coupling include acoustic communication, often important in the context of seasonal reproduction. During the reproductive summer season, both male and female midshipman fish (Porichthys notatus) exhibit similar increases in the steroid-dependent frequency sensitivity of the saccule, the main auditory division of the inner ear. This form of auditory plasticity enhances detection of the higher frequency components of the multi-harmonic, long-duration advertisement calls produced repetitively by males during summer nights of peak vocal and spawning activity. The molecular basis of this seasonal auditory plasticity has not been fully resolved. Here, we utilize an unbiased transcriptomic RNA sequencing approach to identify differentially expressed transcripts within the saccule's hair cell epithelium of reproductive summer and non-reproductive winter fish. RESULTS: We assembled 74,027 unique transcripts from our saccular epithelial sequence reads. Of these, 6.4 % and 3.0 % were upregulated in the reproductive and non-reproductive saccular epithelium, respectively. Gene ontology (GO) term enrichment analyses of the differentially expressed transcripts showed that the reproductive saccular epithelium was transcriptionally, translationally, and metabolically more active than the non-reproductive epithelium. Furthermore, the expression of a specific suite of candidate genes, including ion channels and components of steroid-signaling pathways, was upregulated in the reproductive compared to the non-reproductive saccular epithelium. We found reported auditory functions for 14 candidate genes upregulated in the reproductive midshipman saccular epithelium, 8 of which are enriched in mouse hair cells, validating their hair cell-specific functions across vertebrates. CONCLUSIONS: We identified a suite of differentially expressed genes belonging to neurotransmission and steroid-signaling pathways, consistent with previous work showing the importance of these characters in regulating hair cell auditory sensitivity in midshipman fish and, more broadly, vertebrates. The results were also consistent with auditory hair cells being generally more physiologically active when animals are in a reproductive state, a time of enhanced sensory-motor coupling between the auditory periphery and the upper harmonics of vocalizations. Together with several new candidate genes, our results identify discrete patterns of gene expression linked to frequency- and steroid-dependent plasticity of hair cell auditory sensitivity.


Assuntos
Peixes/genética , Células Ciliadas Auditivas , Esteroides/metabolismo , Vocalização Animal , Animais , Batracoidiformes/genética , Batracoidiformes/fisiologia , Orelha Interna/metabolismo , Orelha Interna/fisiologia , Epitélio/metabolismo , Feminino , Peixes/fisiologia , Regulação da Expressão Gênica , Masculino , Camundongos , Reprodução/fisiologia , Estações do Ano
19.
BMC Genomics ; 16: 408, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26014649

RESUMO

BACKGROUND: Vocalization is a prominent social behavior among vertebrates, including in the midshipman fish, an established model for elucidating the neural basis of acoustic communication. Courtship vocalizations produced by territorial males are essential for reproductive success, vary over daily and seasonal cycles, and last up to hours per call. Vocalizations rely upon extreme synchrony and millisecond precision in the firing of a homogeneous population of motoneurons, the vocal motor nucleus (VMN). Although studies have identified neural mechanisms driving rapid, precise, and stable neuronal firing over long periods of calling, little is known about underlying genetic/molecular mechanisms. RESULTS: We used RNA sequencing-based transcriptome analyses to compare patterns of gene expression in VMN to the surrounding hindbrain across three daily and seasonal time points of high and low sound production to identify candidate genes that underlie VMN's intrinsic and network neuronal properties. Results from gene ontology enrichment, enzyme pathway mapping, and gene category-wide expression levels highlighted the importance of cellular respiration in VMN function, consistent with the high energetic demands of sustained vocal behavior. Functionally important candidate genes upregulated in the VMN, including at time points corresponding to high natural vocal activity, encode ion channels and neurotransmitter receptors, hormone receptors and biosynthetic enzymes, neuromodulators, aerobic respiration enzymes, and antioxidants. Quantitative PCR and RNA-seq expression levels for 28 genes were significantly correlated. Many candidate gene products regulate mechanisms of neuronal excitability, including those previously identified in VMN motoneurons, as well as novel ones that remain to be investigated. Supporting evidence from previous studies in midshipman strongly validate the value of transcriptomic analyses for linking genes to neural characters that drive behavior. CONCLUSIONS: Transcriptome analyses highlighted a suite of molecular mechanisms that regulate vocalization over behaviorally relevant timescales, spanning milliseconds to hours and seasons. To our knowledge, this is the first comprehensive characterization of gene expression in a dedicated vocal motor nucleus. Candidate genes identified here may belong to a conserved genetic toolkit for vocal motoneurons facing similar energetic and neurophysiological demands.


Assuntos
Batracoidiformes/genética , Perfilação da Expressão Gênica/métodos , Rombencéfalo/fisiologia , Análise de Sequência de RNA/métodos , Vocalização Animal , Animais , Batracoidiformes/anatomia & histologia , Regulação da Expressão Gênica , Masculino , Neurônios Motores/fisiologia , Estações do Ano , Comportamento Social , Fatores de Tempo
20.
Proc Natl Acad Sci U S A ; 109 Suppl 1: 10677-84, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22723366

RESUMO

Acoustic signaling behaviors are widespread among bony vertebrates, which include the majority of living fishes and tetrapods. Developmental studies in sound-producing fishes and tetrapods indicate that central pattern generating networks dedicated to vocalization originate from the same caudal hindbrain rhombomere (rh) 8-spinal compartment. Together, the evidence suggests that vocalization and its morphophysiological basis, including mechanisms of vocal-respiratory coupling that are widespread among tetrapods, are ancestral characters for bony vertebrates. Premotor-motor circuitry for pectoral appendages that function in locomotion and acoustic signaling develops in the same rh8-spinal compartment. Hence, vocal and pectoral phenotypes in fishes share both developmental origins and roles in acoustic communication. These findings lead to the proposal that the coupling of more highly derived vocal and pectoral mechanisms among tetrapods, including those adapted for nonvocal acoustic and gestural signaling, originated in fishes. Comparative studies further show that rh8 premotor populations have distinct neurophysiological properties coding for equally distinct behavioral attributes such as call duration. We conclude that neural network innovations in the spatiotemporal patterning of vocal and pectoral mechanisms of social communication, including forelimb gestural signaling, have their evolutionary origins in the caudal hindbrain of fishes.


Assuntos
Acústica , Evolução Biológica , Gestos , Rede Nervosa/anatomia & histologia , Rede Nervosa/embriologia , Vocalização Animal/fisiologia , Animais , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa