Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 259(1): 23, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108903

RESUMO

MAIN CONCLUSION: The ex vitro hairy root system from petioles of detached soybean leaves allows the functional validation of genes using classical transgenesis and CRISPR strategies (e.g., sgRNA validation, gene activation) associated with nematode bioassays. Agrobacterium rhizogenes-mediated root transformation has been widely used in soybean for the functional validation of target genes in classical transgenesis and single-guide RNA (sgRNA) in CRISPR-based technologies. Initial data showed that in vitro hairy root induction from soybean cotyledons and hypocotyls were not the most suitable strategies for simultaneous performing genetic studies and nematode bioassays. Therefore, an ex vitro hairy root system was developed for in planta screening of target molecules during soybean parasitism by root-knot nematodes (RKNs). Applying this method, hairy roots were successfully induced by A. rhizogenes from petioles of detached soybean leaves. The soybean GmPR10 and GmGST genes were then constitutively overexpressed in both soybean hairy roots and tobacco plants, showing a reduction in the number of Meloidogyne incognita-induced galls of up to 41% and 39%, respectively. In addition, this system was evaluated for upregulation of the endogenous GmExpA and GmExpLB genes by CRISPR/dCas9, showing high levels of gene activation and reductions in gall number of up to 58.7% and 67.4%, respectively. Furthermore, morphological and histological analyses of the galls were successfully performed. These collective data validate the ex vitro hairy root system for screening target genes, using classical overexpression and CRISPR approaches, directly in soybean in a simple manner and associated with nematode bioassays. This system can also be used in other root pathosystems for analyses of gene function and studies of parasite interactions with plants, as well as for other purposes such as studies of root biology and promoter characterization.


Assuntos
Glycine max , Nematoides , Animais , Glycine max/genética , RNA Guia de Sistemas CRISPR-Cas , Bioensaio , Cotilédone , Nematoides/genética
2.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430188

RESUMO

Cotton is the most important crop for fiber production worldwide. However, the cotton boll weevil (CBW) is an insect pest that causes significant economic losses in infested areas. Current control methods are costly, inefficient, and environmentally hazardous. Herein, we generated transgenic cotton lines expressing double-stranded RNA (dsRNA) molecules to trigger RNA interference-mediated gene silencing in CBW. Thus, we targeted three essential genes coding for chitin synthase 2, vitellogenin, and ecdysis-triggering hormone receptor. The stability of expressed dsRNAs was improved by designing a structured RNA based on a viroid genome architecture. We transformed cotton embryos by inserting a promoter-driven expression cassette that overexpressed the dsRNA into flower buds. The transgenic cotton plants were characterized, and positive PCR transformed events were detected with an average heritability of 80%. Expression of dsRNAs was confirmed in floral buds by RT-qPCR, and the T1 cotton plant generation was challenged with fertilized CBW females. After 30 days, data showed high mortality (around 70%) in oviposited yolks. In adult insects fed on transgenic lines, chitin synthase II and vitellogenin showed reduced expression in larvae and adults, respectively. Developmental delays and abnormalities were also observed in these individuals. Our data remark on the potential of transgenic cotton based on a viroid-structured dsRNA to control CBW.


Assuntos
Gorgulhos , Humanos , Animais , Gorgulhos/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Gossypium/genética , Gossypium/metabolismo , Vitelogeninas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
3.
BMC Bioinformatics ; 18(1): 240, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28476106

RESUMO

BACKGROUND: The Geminiviridae family encompasses a group of single-stranded DNA viruses with twinned and quasi-isometric virions, which infect a wide range of dicotyledonous and monocotyledonous plants and are responsible for significant economic losses worldwide. Geminiviruses are divided into nine genera, according to their insect vector, host range, genome organization, and phylogeny reconstruction. Using rolling-circle amplification approaches along with high-throughput sequencing technologies, thousands of full-length geminivirus and satellite genome sequences were amplified and have become available in public databases. As a consequence, many important challenges have emerged, namely, how to classify, store, and analyze massive datasets as well as how to extract information or new knowledge. Data mining approaches, mainly supported by machine learning (ML) techniques, are a natural means for high-throughput data analysis in the context of genomics, transcriptomics, proteomics, and metabolomics. RESULTS: Here, we describe the development of a data warehouse enriched with ML approaches, designated geminivirus.org. We implemented search modules, bioinformatics tools, and ML methods to retrieve high precision information, demarcate species, and create classifiers for genera and open reading frames (ORFs) of geminivirus genomes. CONCLUSIONS: The use of data mining techniques such as ETL (Extract, Transform, Load) to feed our database, as well as algorithms based on machine learning for knowledge extraction, allowed us to obtain a database with quality data and suitable tools for bioinformatics analysis. The Geminivirus Data Warehouse (geminivirus.org) offers a simple and user-friendly environment for information retrieval and knowledge discovery related to geminiviruses.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Geminiviridae/genética , Aprendizado de Máquina , Algoritmos , DNA de Cadeia Simples/genética , DNA Viral/genética , Fases de Leitura Aberta/genética , Filogenia , Plantas/virologia
4.
Toxins (Basel) ; 15(1)2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36668875

RESUMO

The beetle Anthonomus grandis Boheman, 1843, is the main cotton pest, causing enormous losses in cotton. The breeding of genetically modified plants with A. grandis resistance is seen as an important control strategy. However, the identification of molecules with high toxicity to this insect remains a challenge. The susceptibility of A. grandis larvae to proteins (Cry1Ba, Cry7Ab, and Mpp23Aa/Xpp37Aa) from Bacillus thuringiensis Berliner, 1915, with toxicity reported against Coleopteran, has been evaluated. The ingestion of different protein concentrations (which were incorporated into an artificial diet) by the larvae was tested in the laboratory, and mortality was evaluated after one week. All Cry proteins tested exhibited higher toxicity than that the untreated artificial diet. These Cry proteins showed similar results to the control Cry1Ac, with low toxicity to A. grandis, since it killed less than 50% of larvae, even at the highest concentration applied (100 µg·g-1). Mpp/Xpp proteins provided the highest toxicity with a 0.18 µg·g-1 value for the 50% lethal concentration. Importantly, this parameter is the lowest ever reported for this insect species tested with B. thuringiensis proteins. This result highlights the potential of Mpp23Aa/Xpp37Aa for the development of a biotechnological tool aiming at the field control of A. grandis.


Assuntos
Bacillaceae , Bacillales , Bacillus thuringiensis , Besouros , Inseticidas , Gorgulhos , Animais , Larva , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Melhoramento Vegetal , Gossypium
5.
Front Plant Sci ; 8: 618, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28473844

RESUMO

Flowering is an important trait in major crops like soybean due to its direct relation to grain production. The circadian clock mediates the perception of seasonal changes in day length and temperature to modulate flowering time. The circadian clock gene EARLY FLOWERING 4 (ELF4) was identified in Arabidopsis thaliana and is believed to play a key role in the integration of photoperiod, circadian regulation, and flowering. The molecular circuitry that comprises the circadian clock and flowering control in soybeans is just beginning to be understood. To date, insufficient information regarding the soybean negative flowering regulators exist, and the biological function of the soybean ELF4 (GmELF4) remains unknown. Here, we investigate the ELF4 family members in soybean and functionally characterize a GmELF4 homologous gene. The constitutive overexpression of GmELF4 delayed flowering in Arabidopsis, showing the ELF4 functional conservation among plants as part of the flowering control machinery. We also show that GmELF4 alters the expression of Arabidopsis key flowering time genes (AtCO and AtFT), and this down-regulation is the likely cause of flowering delay phenotypes. Furthermore, we identified the GmELF4 network genes to infer the participation of GmELF4 in soybeans. The data generated in this study provide original insights for comprehending the role of the soybean circadian clock ELF4 gene as a negative flowering controller.

6.
PLoS One ; 12(11): e0187920, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145496

RESUMO

Soybean (Glycine max) is one of the major crops worldwide and flooding stress affects the production and expansion of cultivated areas. Oxygen is essential for mitochondrial aerobic respiration to supply the energy demand of plant cells. Because oxygen diffusion in water is 10,000 times lower than in air, partial (hypoxic) or total (anoxic) oxygen deficiency is important component of flooding. Even when oxygen is externally available, oxygen deficiency frequently occurs in bulky, dense or metabolically active tissues such as phloem, meristems, seeds, and fruits. In this study, we analyzed conserved and divergent root transcriptional responses between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars under hypoxic stress conditions with RNA-seq. To understand how soybean genes evolve and respond to hypoxia, stable and differentially expressed genes were characterized structurally and compositionally comparing its mechanistic relationship. Between cultivars, Embrapa 45 showed less up- and more down-regulated genes, and stronger induction of phosphoglucomutase (Glyma05g34790), unknown protein related to N-terminal protein myristoylation (Glyma06g03430), protein suppressor of phyA-105 (Glyma06g37080), and fibrillin (Glyma10g32620). RNA-seq and qRT-PCR analysis of non-symbiotic hemoglobin (Glyma11g12980) indicated divergence in gene structure between cultivars. Transcriptional changes for genes in amino acids and derivative metabolic process suggest involvement of amino acids metabolism in tRNA modifications, translation accuracy/efficiency, and endoplasmic reticulum stress in both cultivars under hypoxia. Gene groups differed in promoter TATA box, ABREs (ABA-responsive elements), and CRT/DREs (C-repeat/dehydration-responsive elements) frequency. Gene groups also differed in structure, composition, and codon usage, indicating biological significances. Additional data suggests that cis-acting ABRE elements can mediate gene expression independent of ABA in soybean roots under hypoxia.


Assuntos
Genes de Plantas , Glycine max/genética , Oxigênio/metabolismo , Estresse Fisiológico , Transcriptoma , Regulação da Expressão Gênica de Plantas , Glycine max/fisiologia
7.
Front Plant Sci ; 8: 865, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642761

RESUMO

Acidic soils are distributed worldwide, predominantly in tropical and subtropical areas, reaching around 50% of the arable soil. This type of soil strongly reduces crop production, mainly because of the presence of aluminum, which has its solubility increased at low pH levels. A well-known physiological mechanism used by plants to cope with Al stress involves activation of membrane transporters responsible for organic acid anions secretion from the root apex to the rhizosphere, which chelate Al, preventing its absorption by roots. In sorghum, a membrane transporter gene belonging to multidrug and toxic compound extrusion (MATE) family was identified and characterized as an aluminum-activated citrate transporter gene responsible for Al tolerance in this crop. Setaria viridis is an emerging model for C4 species and it is an important model to validate some genes for further C4 crops transformation, such as sugarcane, maize, and wheat. In the present work, Setaria viridis was used as a model plant to overexpress a newly identified MATE gene from Brachypodium distachyon (BdMATE), closely related to SbMATE, for aluminum tolerance assays. Transgenic S. viridis plants overexpressing a BdMATE presented an improved Al tolerance phenotype, characterized by sustained root growth and exclusion of aluminum from the root apex in transgenic plants, as confirmed by hematoxylin assay. In addition, transgenic plants showed higher root citrate exudation into the rhizosphere, suggesting that Al tolerance improvement in these plants could be related to the chelation of the metal by the organic acid anion. These results suggest that BdMATE gene can be used to transform C4 crops of economic importance with improved aluminum tolerance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa