Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275488

RESUMO

We consider information dissemination over a network of gossiping agents. In this model, a source keeps the most up-to-date information about a time-varying binary state of the world, and n receiver nodes want to follow the information at the source as accurately as possible. When the information at the source changes, the source first sends updates to a subset of m≤n nodes. Then, the nodes share their local information during the gossiping period, to disseminate the information further. The nodes then estimate the information at the source, using the majority rule at the end of the gossiping period. To analyze the information dissemination, we introduce a new error metric to find the average percentage of nodes that can accurately obtain the most up-to-date information at the source. We characterize the equations necessary to obtain the steady-state distribution for the average error and then analyze the system behavior under both high and low gossip rates. We develop an adaptive policy that the source can use to determine its current transmission capacity m based on its past transmission rates and the accuracy of the information at the nodes. Finally, we implement a clustered gossiping network model, to further improve the information dissemination.

2.
Entropy (Basel) ; 24(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35741500

RESUMO

We consider real-time timely tracking of infection status (e.g., COVID-19) of individuals in a population. In this work, a health care provider wants to detect both infected people and people who have recovered from the disease as quickly as possible. In order to measure the timeliness of the tracking process, we use the long-term average difference between the actual infection status of the people and their real-time estimate by the health care provider based on the most recent test results. We first find an analytical expression for this average difference for given test rates, infection rates and recovery rates of people. Next, we propose an alternating minimization-based algorithm to find the test rates that minimize the average difference. We observe that if the total test rate is limited, instead of testing all members of the population equally, only a portion of the population may be tested in unequal rates calculated based on their infection and recovery rates. Next, we characterize the average difference when the test measurements are erroneous (i.e., noisy). Further, we consider the case where the infection status of individuals may be dependent, which occurs when an infected person spreads the disease to another person if they are not detected and isolated by the health care provider. In addition, we consider an age of incorrect information-based error metric where the staleness metric increases linearly over time as long as the health care provider does not detect the changes in the infection status of the people. Through extensive numerical results, we observe that increasing the total test rate helps track the infection status better. In addition, an increased population size increases diversity of people with different infection and recovery rates, which may be exploited to spend testing capacity more efficiently, thereby improving the system performance. Depending on the health care provider's preferences, test rate allocation can be adjusted to detect either the infected people or the recovered people more quickly. In order to combat any errors in the test, it may be more advantageous for the health care provider to not test everyone, and instead, apply additional tests to a selected portion of the population. In the case of people with dependent infection status, as we increase the total test rate, the health care provider detects the infected people more quickly, and thus, the average time that a person stays infected decreases. Finally, the error metric needs to be chosen carefully to meet the priorities of the health care provider, as the error metric used greatly influences who will be tested and at what test rate.

3.
Soft Matter ; 14(21): 4311-4316, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29701204

RESUMO

We present a new, surface-based microfluidic platform for the synthesis of nanoparticles. In this platform chemical reagents are carried in separate droplets, then mixed and later transported to a desired location on the surface using surface textured ratchet tracks. This brings the advantages of both synthesizing and transporting nanoparticles in situ without having cross-contamination between samples and addressing each sample independently. This platform is also capable of carrying multiple synthesis reactions concurrently.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa