Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 559(7714): 415-418, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995859

RESUMO

Bioactive natural products have evolved to inhibit specific cellular targets and have served as lead molecules for health and agricultural applications for the past century1-3. The post-genomics era has brought a renaissance in the discovery of natural products using synthetic-biology tools4-6. However, compared to traditional bioactivity-guided approaches, genome mining of natural products with specific and potent biological activities remains challenging4. Here we present the discovery and validation of a potent herbicide that targets a critical metabolic enzyme that is required for plant survival. Our approach is based on the co-clustering of a self-resistance gene in the natural-product biosynthesis gene cluster7-9, which provides insight into the potential biological activity of the encoded compound. We targeted dihydroxy-acid dehydratase in the branched-chain amino acid biosynthetic pathway in plants; the last step in this pathway is often targeted for herbicide development10. We show that the fungal sesquiterpenoid aspterric acid, which was discovered using the method described above, is a sub-micromolar inhibitor of dihydroxy-acid dehydratase that is effective as a herbicide in spray applications. The self-resistance gene astD was validated to be insensitive to aspterric acid and was deployed as a transgene in the establishment of plants that are resistant to aspterric acid. This herbicide-resistance gene combination complements the urgent ongoing efforts to overcome weed resistance11. Our discovery demonstrates the potential of using a resistance-gene-directed approach in the discovery of bioactive natural products.


Assuntos
Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Herbicidas/metabolismo , Herbicidas/farmacologia , Compostos Heterocíclicos com 3 Anéis/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Produtos Biológicos/análise , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , Resistência a Herbicidas/genética , Herbicidas/análise , Compostos Heterocíclicos com 3 Anéis/análise , Hidroliases/antagonistas & inibidores , Hidroliases/química , Hidroliases/metabolismo , Modelos Moleculares , Família Multigênica/genética , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas/genética , Transgenes/genética
2.
J Am Chem Soc ; 142(19): 8550-8554, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32365298

RESUMO

The pentasubstituted pyridine natural products harzianopyridone and atpenins are potent inhibitors of mitochondrial complex II. We identified the pathways of these compounds from their fungal producers and uncovered that the biosynthetic steps require multiple iterative enzymes. In particular, a methyltransferase and a flavin-dependent monooxygenase are used iteratively to introduce C5 and C6 methoxy groups. The pathway unexpectedly requires the installation and removal of an N-methoxy group, which is proposed to be a directing group that tunes the reactivity of the pyridone ring, possibly through the alpha effect.


Assuntos
Produtos Biológicos/metabolismo , Metiltransferases/metabolismo , Oxigenases de Função Mista/metabolismo , Piridonas/metabolismo , Biocatálise , Produtos Biológicos/química , Hypocreales/enzimologia , Metiltransferases/química , Oxigenases de Função Mista/química , Estrutura Molecular , Piridonas/química
3.
Biosci Biotechnol Biochem ; 84(3): 640-650, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31746676

RESUMO

Corn fibre xylan (CX) shows high resistance to enzymatic hydrolysis due to its densely decorated side chains. To find enzymes capable of hydrolyzing CX, we isolated a bacterial strain (named H2C) from soil, by enrichment culture using non-starch polysaccharides of corn as the sole carbon source. Analysis based on the 16S rRNA sequence placed strain H2C within genus Paenibacillus. Enzymes were purified from supernatant of culture broth of strain H2C based on solubilizing activities toward CX. Four enzymes, Xyn5A, Xyn10B, Xyn11A, and Xyn30A, were successfully identified, which belong to glycoside hydrolase (GH) families, 5, 10, 11, and 30, respectively. Phylogenetic analysis classified Xyn5A in subfamily 35 of GH family 5, a subfamily of unknown function. Their activities toward beechwood xylan and/or wheat arabinoxylan indicated that these enzymes are ß-1,4-xylanases. They showed high solubilizing activities toward a feed material, corn dried distiller's grains with solubles, compared to five previously characterized xylanases.Abbreviations : CX: corn fibre xylan; DDGS: corn dried distiller's grains with solubles.


Assuntos
Endo-1,4-beta-Xilanases/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Paenibacillus/enzimologia , Xilanos/metabolismo , Zea mays , Endo-1,4-beta-Xilanases/classificação , Hidrólise , Filogenia , Polissacarídeos/metabolismo
4.
ACS Catal ; 11(15): 9898-9903, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35355836

RESUMO

Here we report the one-pot, cell-free enzymatic synthesis of the plant monoterpene nepetalactol starting from the readily available geraniol. A pair of orthogonal cofactor regeneration systems permitted NAD+-dependent geraniol oxidation followed by NADPH-dependent reductive cyclization without isolation of intermediates. The orthogonal cofactor regeneration system maintained a high ratio of NAD+ to NADH and a low ratio of NADP+ to NADPH. The overall reaction contains four biosynthetic enzymes, including a soluble P450; and five accessory and cofactor regeneration enzymes. Furthermore, addition of a NAD+-dependent dehydrogenase to the one-pot mixture led to ~1 g/L of nepetalactone, the active cat- attractant in catnip.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa