Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
1.
J Cell Mol Med ; 28(11): e18412, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842132

RESUMO

Cyclin-dependent kinase 5 (Cdk5) is a protein expressed in postmitotic neurons in the central nervous system (CNS). Cdk5 is activated by p35 and p39 which are neuron regulatory subunits. Cdk5/p35 complex is activated by calpain protease to form Cdk5/p35 which has a neuroprotective effect by regulating the synaptic plasticity and memory functions. However, exaggerated Cdk5 is implicated in different types of neurodegenerative diseases including Parkinson disease (PD). Therefore, modulation of Cdk5 signalling may mitigate PD neuropathology. Therefore, the aim of the present review was to discuss the critical role of Cdk5 in the pathogenesis of PD, and how Cdk5 inhibitors are effectual in the management of PD. In conclusion, overactivated Cdk5 is involved the development of neurodegeneration, and Cdk5/calpain inhibitors such as statins, metformin, fenofibrates and rosiglitazone can attenuate the progression of PD neuropathology.


Assuntos
Quinase 5 Dependente de Ciclina , Doença de Parkinson , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Animais , Calpaína/metabolismo , Calpaína/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
J Cell Mol Med ; 28(8): e18196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38534093

RESUMO

Liver cirrhosis is a silent disease in humans and is experimentally induced by many drugs and toxins as thioacetamide (TAA) in particular, which is the typical model for experimental induction of hepatic fibrosis. Thus, the objective of the present study was to elucidate the possible protective effects of lactéol® forte (LF) and quercetin dihydrate (QD) against TAA-induced hepatic damage in male albino rats. Induction of hepatotoxicity was performed by TAA injection (200 mg/kg I/P, twice/ week) in rats. LF (1 × 109 CFU/rat 5 times/week) and QD (50 mg/kg 5 times/week) treated groups were administered concurrently with TAA injection (200 mg/kg I/P, twice/ week). The experimental treatments were conducted for 12 weeks. Hepatotoxicity was evaluated biochemically by measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) in the serum and histopathologically with the scoring of histopathological changes besides histochemical assessment of collagen by Masson's trichrome and immunohistochemical analysis for α-smooth muscle actin (α-SMA), Ki67 and caspase-3 expression in liver sections. Our results indicated that LF and QD attenuated some biochemical changes and histochemical markers in TAA-mediated hepatotoxicity in rats by amelioration of biochemical markers and collagen, α-SMA, Ki67 and caspase3 Immunoexpression. Additionally, LF and QD supplementation downregulated the proliferative, necrotic, fibroblastic changes, eosinophilic intranuclear inclusions, hyaline globules and Mallory-like bodies that were detected histopathologically in the TAA group. In conclusion, LF showed better hepatic protection than QD against TAA-induced hepatotoxicity in rats by inhibiting inflammatory reactions with the improvement of some serum hepatic transaminases, histopathological picture and immunohistochemical markers.


Assuntos
Carbonato de Cálcio , Doença Hepática Induzida por Substâncias e Drogas , Lactose , Quercetina , Humanos , Ratos , Masculino , Animais , Quercetina/farmacologia , Tioacetamida/toxicidade , Antígeno Ki-67/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Flavonoides/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno/metabolismo , Estresse Oxidativo , Combinação de Medicamentos
3.
J Cell Mol Med ; 28(2): e17993, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37847125

RESUMO

Alzheimer's disease (AD) is a heterogeneous neurodegenerative disease with multifaceted neuropathological disorders. AD is characterized by intracellular accumulation of phosphorylated tau proteins and extracellular deposition of amyloid beta (Aß). Various protease enzymes, including neprilysin (NEP), are concerned with the degradation and clearance of Aß. Indeed, a defective neuronal clearance pathway due to the dysfunction of degradation enzymes might be a possible mechanism for the accumulation of Aß and subsequent progression of AD neuropathology. NEP is one of the most imperative metalloproteinase enzymes involved in the clearance of Aß. This review aimed to highlight the possible role of NEP inhibitors in AD. The combination of sacubitril and valsartan which is called angiotensin receptor blocker and NEP inhibitor (ARNI) may produce beneficial and deleterious effects on AD neuropathology. NEP inhibitors might increase the risk of AD by the inhibition of Aß clearance, and increase brain bradykinin (BK) and natriuretic peptides (NPs), which augment the pathogenesis of AD. These verdicts come from animal model studies, though they may not be applied to humans. However, clinical studies revealed promising safety findings regarding the use of ARNI. Moreover, NEP inhibition increases various neuroprotective peptides involved in inflammation, glucose homeostasis and nerve conduction. Also, NEP inhibitors may inhibit dipeptidyl peptidase 4 (DPP4) expression, ameliorating insulin and glucagon-like peptide 1 (GLP-1) levels. These findings proposed that NEP inhibitors may have a protective effect against AD development by increasing GLP-1, neuropeptide Y (NPY) and substance P, and deleterious effects by increasing brain BK. Preclinical and clinical studies are recommended in this regard.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neprilisina/metabolismo , Peptídeo 1 Semelhante ao Glucagon
4.
J Cell Mol Med ; 28(12): e18495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899551

RESUMO

Parkinson disease (PD) is one of the most common neurodegenerative diseases of the brain. Of note, brain renin-angiotensin system (RAS) is intricate in the PD neuropathology through modulation of oxidative stress, mitochondrial dysfunction and neuroinflammation. Therefore, modulation of brain RAS by angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) may be effective in reducing the risk and PD neuropathology. It has been shown that all components including the peptides and enzymes of the RAS are present in the different brain areas. Brain RAS plays a critical role in the regulation of memory and cognitive function, and in the controlling of central blood pressure. However, exaggerated brain RAS is implicated in the pathogenesis of different neurodegenerative diseases including PD. Two well-known pathways of brain RAS are recognized including; the classical pathway which is mainly mediated by AngII/AT1R has detrimental effects. Conversely, the non-classical pathway which is mostly mediated by ACE2/Ang1-7/MASR and AngII/AT2R has beneficial effects against PD neuropathology. Exaggerated brain RAS affects the viability of dopaminergic neurons. However, the fundamental mechanism of brain RAS in PD neuropathology was not fully elucidated. Consequently, the purpose of this review is to disclose the mechanistic role of RAS in in the pathogenesis of PD. In addition, we try to revise how the ACEIs and ARBs can be developed for therapeutics in PD.


Assuntos
Encéfalo , Doença de Parkinson , Sistema Renina-Angiotensina , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Encéfalo/patologia , Encéfalo/metabolismo , Animais , Antagonistas de Receptores de Angiotensina/uso terapêutico , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/farmacologia
5.
J Cell Mol Med ; 28(10): e18368, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752280

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Doença de Parkinson , Receptor trkB , Transdução de Sinais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Receptor trkB/metabolismo , Animais , Glicoproteínas de Membrana/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia
6.
Ann Hematol ; 103(5): 1423-1433, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37405444

RESUMO

Coronavirus disease 19 (COVID-19) is an infectious disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) causing acute systemic disorders and multi-organ damage. ß-thalassemia (ß-T) is an autosomal recessive disorder leading to the development of anemia. ß-T may lead to complications such as immunological disorders, iron overload, oxidative stress, and endocrinopathy. ß-T and associated complications may increase the risk of SARS-CoV-2, as inflammatory disturbances and oxidative stress disorders are linked with COVID-19. Therefore, the objective of the present review was to elucidate the potential link between ß-T and COVID-19 regarding the underlying comorbidities. The present review showed that most of the ß-T patients with COVID-19 revealed mild to moderate clinical features, and ß-T may not be linked with Covid-19 severity. Though patients with transfusion-dependent ß-T (TDT) develop less COVID-19 severity compared to non-transfusion-depend ß-T(NTDT), preclinical and clinical studies are recommended in this regard.


Assuntos
COVID-19 , Sobrecarga de Ferro , Talassemia beta , Humanos , Talassemia beta/complicações , Talassemia beta/epidemiologia , Talassemia beta/terapia , COVID-19/complicações , SARS-CoV-2 , Transfusão de Sangue , Sobrecarga de Ferro/etiologia
7.
Neurochem Res ; 49(3): 533-547, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38006577

RESUMO

Epilepsy is a neurological disease characterized by repeated seizures. Despite of that the brain-derived neurotrophic factor (BDNF) is implicated in the pathogenesis of epileptogenesis and epilepsy, BDNF may have a neuroprotective effect against epilepsy. Thus, the goal of the present review was to highlight the protective and detrimental roles of BDNF in epilepsy. In this review, we also try to find the relation of BDNF with other signaling pathways and cellular processes including autophagy, mTOR pathway, progranulin (PGN), and α-Synuclein (α-Syn) which negatively and positively regulate BDNF/tyrosine kinase receptor B (TrkB) signaling pathway. Therefore, the assessment of BDNF levels in epilepsy should be related to other neuronal signaling pathways and types of epilepsy in both preclinical and clinical studies. In conclusion, there is a strong controversy concerning the potential role of BDNF in epilepsy. Therefore, preclinical, molecular, and clinical studies are warranted in this regard.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Epilepsia , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Epilepsia/metabolismo , Convulsões/metabolismo , Transdução de Sinais/fisiologia , Receptor trkB/metabolismo
8.
Neurochem Res ; 49(4): 980-997, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38170385

RESUMO

Diabetic neuropathic pain is one of the most devasting disorders of peripheral nervous system. The loss of GABAergic inhibition is associated with the development of painful diabetic neuropathy. The current study evaluated the potential of 3-Hydroxy-2-methoxy-6-methyl flavone (3-OH-2'MeO6MF), to ameliorate peripheral neuropathic pain using an STZ-induced hyperglycemia rat model. The pain threshold was assessed by tail flick, cold, mechanical allodynia, and formalin test on days 0, 14, 21, and 28 after STZ administration accompanied by evaluation of several biochemical parameters. Administration of 3-OH-2'-MeO6MF (1,10, 30, and 100 mg/kg, i.p) significantly enhanced the tail withdrawal threshold in tail-flick and tail cold allodynia tests. 3-OH-2'-MeO6MF also increased the paw withdrawal threshold in mechanical allodynia and decreased paw licking time in the formalin test. Additionally, 3-OH-2'-MeO6MF also attenuated the increase in concentrations of myeloperoxidase (MPO), thiobarbituric acid reactive substances (TBARS), nitrite, TNF-α, and IL 6 along with increases in glutathione (GSH). Pretreatment of pentylenetetrazole (PTZ) (40 mg/kg, i.p.) abolished the antinociceptive effect of 3-OH-2'-MeO6MF in mechanical allodynia. Besides, the STZ-induced alterations in the GABA concentration and GABA transaminase activity attenuated by 3-OH-2'-MeO6MF treatment suggest GABAergic mechanisms. Molecular docking also authenticates the involvement of α2ß2γ2L GABA-A receptors and GABA-T enzyme in the antinociceptive activities of 3-OH-2'-MeO6MF.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Flavonas , Neuralgia , Ratos , Animais , Hiperalgesia/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Estreptozocina , Simulação de Acoplamento Molecular , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/complicações , Analgésicos/farmacologia , Ácido gama-Aminobutírico/farmacologia , Flavonas/farmacologia , Flavonas/uso terapêutico , Biomarcadores
9.
Mol Cell Biochem ; 479(4): 975-991, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37266747

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease developed due to the degeneration of dopaminergic neurons in the substantia nigra. There is no single effective treatment in the management of PD. Therefore, repurposing effective and approved drugs like metformin could be an effective strategy for managing PD. However, the mechanistic role of metformin in PD neuropathology was not fully elucidated. Metformin is an insulin-sensitizing agent used as a first-line therapy in the management of type 2 diabetes mellitus (T2DM) and has the ability to reduce insulin resistance (IR). Metformin may have a beneficial effect on PD neuropathology. The neuroprotective effect of metformin is mainly mediated by activating adenosine monophosphate protein kinase (AMPK), which reduces mitochondrial dysfunction, oxidative stress, and α-synuclein aggregation. As well, metformin mitigates brain IR a hallmark of PD and other neurodegenerative diseases. However, metformin may harm PD neuropathology by inducing hyperhomocysteinemia and deficiency of folate and B12. Therefore, this review aimed to find the potential role of metformin regarding its protective and detrimental effects on the pathogenesis of PD. The mechanistic role of metformin in PD neuropathology was not fully elucidated. Most studies regarding metformin and its effectiveness in PD neuropathology were observed in preclinical studies, which are not fully translated into clinical settings. In addition, metformin effect on PD neuropathology was previously clarified in T2DM, potentially linked to an increasing PD risk. These limitations hinder the conclusion concerning the therapeutic efficacy of metformin and its beneficial and detrimental role in PD. Therefore, as metformin does not cause hypoglycemia and is a safe drug, it should be evaluated in non-diabetic patients concerning PD risk.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Doenças Neurodegenerativas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neurônios Dopaminérgicos
10.
Diabetes Obes Metab ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802993

RESUMO

Depression is a mood disorder that may increase risk for the development of insulin resistance (IR) and type 2 diabetes (T2D), and vice versa. However, the mechanistic pathway linking depression and T2D is not fully elucidated. The aim of this narrative review, therefore, was to discuss the possible link between depression and T2D. The coexistence of T2D and depression is twice as great compared to the occurrence of either condition independently. Hyperglycaemia and dyslipidaemia promote the incidence of depression by enhancing inflammation and reducing brain serotonin (5-hydroxytryptamine [5HT]). Dysregulation of insulin signalling in T2D impairs brain 5HT signalling, leading to the development of depression. Furthermore, depression is associated with the development of hyperglycaemia and poor glycaemic control. Psychological stress and depression promote the development of T2D. In conclusion, T2D could be a potential risk factor for the development of depression through the induction of inflammatory reactions and oxidative stress that affect brain neurotransmission. In addition, chronic stress in depression may induce the development of T2D through dysregulation of the hypothalamic-pituitary-adrenal axis and increase circulating cortisol levels, which triggers IR and T2D.

11.
Inflammopharmacology ; 32(2): 917-925, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499742

RESUMO

Parkinson disease (PD) is chronic and progressive neurodegenerative disease of the brain characterized by motor symptoms including tremors, rigidity, postural instability, and bradykinesia. PD neuropathology is due to the progressive degeneration of dopaminergic neurons in the substantia nigra and accumulation of Lewy bodies in the survival neurons. The brain contains a largest amount of cholesterol which is mainly synthesized from astrocytes and glial cells. Cholesterol is intricate in the pathogenesis of PD and may be beneficial or deleterious. Therefore, there are controversial points concerning the role of cholesterol in PD neuropathology. In addition, cholesterol-lowering agents' statins can affect brain cholesterol. Different studies highlighted that statins, via inhibition of brain HMG-CoA, can affect neuronal integrity through suppression of neuronal cholesterol, which regulates synaptic plasticity and neurotransmitter release. Furthermore, statins affect the development and progression of different neurodegenerative diseases in bidirectional ways that could be beneficial or detrimental. Therefore, the objective of the present review was to clarify the double-sward effects of cholesterol and statins on PD neuropathology.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios Dopaminérgicos , Colesterol
12.
Int J Environ Health Res ; 34(3): 1751-1762, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37535931

RESUMO

Three hundred samples, including meat from the slaughtered carcass and water, air samples, and swabs from the floor, wall, and employees' hands, were collected from five municipal abattoirs spread across several Egyptian provinces. The Escherichia coli was isolated from floor swabs, meat, air, wall, hand, and water samples. Serotyping of the recovered isolates clarified the presence of various serotypes, including enterohemorrhagic serotypes (O111: H4, O128: H2, and O127: H6) and enterotoxigenic serotypes (O44: H18 and O125: H21). The isolates were resistant to cefotaxime (100%), amoxiclav (80%), then rifampin (66.7%). The stx1 gene, stx2 gene, eaeA gene, blaCMY2 gene and iss gene were detected in 10-80 % of the isolates. Nanosilver (AgNPs) showed that 12.5 ppm was the lowest concentration that prevented bacterial growth. It was observed that 12% of workers wore a clean white coat, only 24% washed their hands between activities during work, only 14% used soap for hand washing, and 42% utilized the same knife for meat and its offal.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Egito , Matadouros , Carne/microbiologia , Água , Proteínas de Escherichia coli/genética
13.
J Cell Mol Med ; 27(13): 1775-1789, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37210624

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). Genetic predisposition and immune dysfunction are involved in the pathogenesis of PD. Notably, peripheral inflammatory disorders and neuroinflammation are associated with PD neuropathology. Type 2 diabetes mellitus (T2DM) is associated with inflammatory disorders due to hyperglycaemia-induced oxidative stress and the release of pro-inflammatory cytokines. Particularly, insulin resistance (IR) in T2DM promotes the degeneration of dopaminergic neurons in the substantia nigra (SN). Thus, T2DM-induced inflammatory disorders predispose to the development and progression of PD, and their targeting may reduce PD risk in T2DM. Therefore, this narrative review aims to find the potential link between T2DM and PD by investigating the role of inflammatory signalling pathways, mainly the nuclear factor kappa B (NF-κB) and the nod-like receptor pyrin 3 (NLRP3) inflammasome. NF-κB is implicated in the pathogenesis of T2DM, and activation of NF-κB with induction of neuronal apoptosis was also confirmed in PD patients. Systemic activation of NLRP3 inflammasome promotes the accumulation of α-synuclein and degeneration of dopaminergic neurons in the SN. Increasing α-synuclein in PD patients enhances NLRP3 inflammasome activation and the release of interleukin (IL)-1ß followed by the development of systemic inflammation and neuroinflammation. In conclusion, activation of the NF-κB/NLRP3 inflammasome axis in T2DM patients could be the causal pathway in the development of PD. The inflammatory mechanisms triggered by activated NLRP3 inflammasome lead to pancreatic ß-cell dysfunction and the development of T2DM. Therefore, attenuation of inflammatory changes by inhibiting the NF-κB/NLRP3 inflammasome axis in the early T2DM may reduce future PD risk.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , alfa-Sinucleína , Doença de Parkinson/metabolismo , Pirina , Proteínas NLR , Doenças Neuroinflamatórias , Diabetes Mellitus Tipo 2/complicações
14.
J Cell Mol Med ; 27(24): 3953-3965, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37737447

RESUMO

Epilepsy is a chronic neurological disease characterized by recurrent seizures. Epilepsy is observed as a well-controlled disease by anti-epileptic agents (AEAs) in about 69%. However, 30%-40% of epileptic patients fail to respond to conventional AEAs leading to an increase in the risk of brain structural injury and mortality. Therefore, adding some FDA-approved drugs that have an anti-seizure activity to the anti-epileptic regimen is logical. The anti-diabetic agent metformin has anti-seizure activity. Nevertheless, the underlying mechanism of the anti-seizure activity of metformin was not entirely clarified. Henceforward, the objective of this review was to exemplify the mechanistic role of metformin in epilepsy. Metformin has anti-seizure activity by triggering adenosine monophosphate-activated protein kinase (AMPK) signalling and inhibiting the mechanistic target of rapamycin (mTOR) pathways which are dysregulated in epilepsy. In addition, metformin improves the expression of brain-derived neurotrophic factor (BDNF) which has a neuroprotective effect. Hence, metformin via induction of BDNF can reduce seizure progression and severity. Consequently, increasing neuronal progranulin by metformin may explain the anti-seizure mechanism of metformin. Also, metformin reduces α-synuclein and increases protein phosphatase 2A (PPA2) with modulation of neuroinflammation. In conclusion, metformin might be an adjuvant with AEAs in the management of refractory epilepsy. Preclinical and clinical studies are warranted in this regard.


Assuntos
Epilepsia , Metformina , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Epilepsia/tratamento farmacológico
15.
J Cell Mol Med ; 27(12): 1735-1744, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37257043

RESUMO

The present study aimed to identify the possible protective effect of diacerein (DIA) on gentamicin (GNT)-induced parotid toxicity in rats. DIA was administered in the presence and absence of GNT. Thirty-two Wistar adult male rats were randomly arranged into four groups: control, DIA (50 mg/kg/day), GNT (100 mg/kg) and GNT+DIA groups for 8 days. Parotid oxidative stress parameters, besides inflammatory and apoptotic biomarkers, were evaluated. Salivary flow rate, transient receptor potential canonical 1 (TRCP1), and C/EBP homologous protein (CHOP) in parotid tissue were measured. A parotid histopathological examination and an interleukin-1 beta (IL-1ß) immunohistochemical study were also performed. GNT significantly increased parotid oxidative stress, inflammatory, apoptotic and CHOP biomarkers with decreased salivary flow rate and TRCP1 level. A histopathological picture of parotid damage and high IL-1ß immunoexpression were detected. DIA significantly normalized the distributed oxidative, inflammatory and apoptotic indicators, CHOP and TRCP1, with a prompt improvement in the histopathological picture and a decrease in IL-1ß immunoexpression. These results reported that DIA protects against GNT-induced parotid toxicity via modulation of TLR4/NF-κB/IL-1ß and TRPC1/CHOP signalling pathways.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , Ratos , Masculino , Animais , NF-kappa B/metabolismo , Interleucina-1beta/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Gentamicinas/efeitos adversos , Ratos Wistar , Biomarcadores
16.
Mol Med ; 29(1): 142, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880579

RESUMO

Autophagy is an explicit cellular process to deliver dissimilar cytoplasmic misfolded proteins, lipids and damaged organelles to the lysosomes for degradation and elimination. The mechanistic target of rapamycin (mTOR) is the main negative regulator of autophagy. The mTOR pathway is involved in regulating neurogenesis, synaptic plasticity, neuronal development and excitability. Exaggerated mTOR activity is associated with the development of temporal lobe epilepsy, genetic and acquired epilepsy, and experimental epilepsy. In particular, mTOR complex 1 (mTORC1) is mainly involved in epileptogenesis. The investigation of autophagy's involvement in epilepsy has recently been conducted, focusing on the critical role of rapamycin, an autophagy inducer, in reducing the severity of induced seizures in animal model studies. The induction of autophagy could be an innovative therapeutic strategy in managing epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus (SE) is perplexing and might be beneficial or detrimental. Therefore, the present review aims to revise the possible role of autophagy in epilepsy.


Assuntos
Epilepsia , Animais , Epilepsia/genética , Epilepsia/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Sirolimo/farmacologia , Autofagia , Modelos Animais de Doenças
17.
J Neurosci Res ; 101(6): 952-975, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36717481

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The hallmarks are the presence of Lewy bodies composed mainly of aggregated α-synuclein and immune activation and inflammation in the brain. The neurotropism of SARS-CoV-2 with induction of cytokine storm and neuroinflammation can contribute to the development of PD. Interestingly, overexpression of α-synuclein in PD patients may limit SARS-CoV-2 neuroinvasion and degeneration of dopaminergic neurons; however, on the other hand, this virus can speed up the α-synuclein aggregation. The review aims to discuss the potential link between COVID-19 and the risk of PD, highlighting the need for further studies to authenticate the potential association. We have also overviewed the influence of SARS-CoV-2 infection on the PD course and management. In this context, we presented the prospects for controlling the COVID-19 pandemic and related PD cases that, beyond global vaccination and novel anti-SARS-CoV-2 agents, may include the development of graphene-based nanoscale platforms offering antiviral and anti-amyloid strategies against PD.


Assuntos
COVID-19 , Doença de Parkinson , Humanos , alfa-Sinucleína/farmacologia , Pandemias , SARS-CoV-2 , Neurônios Dopaminérgicos
18.
Cell Mol Neurobiol ; 43(6): 2743-2759, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37074484

RESUMO

Parkinson's disease (PD) is one of the most common degenerative brain disorders caused by the loss of dopaminergic neurons in the substantia nigra (SN). Lewy bodies and -synuclein accumulation in the SN are hallmarks of the neuropathology of PD. Due to lifestyle changes and prolonged L-dopa administration, patients with PD frequently have vitamin deficiencies, especially folate, vitamin B6, and vitamin B12. These disorders augment circulating levels of Homocysteine with the development of hyperhomocysteinemia, which may contribute to the pathogenesis of PD. Therefore, this review aimed to ascertain if hyperhomocysteinemia may play a part in oxidative and inflammatory signaling pathways that contribute to PD development. Hyperhomocysteinemia is implicated in the pathogenesis of neurodegenerative disorders, including PD. Hyperhomocysteinemia triggers the development and progression of PD by different mechanisms, including oxidative stress, mitochondrial dysfunction, apoptosis, and endothelial dysfunction. Particularly, the progression of PD is linked with high inflammatory changes and systemic inflammatory disorders. Hyperhomocysteinemia induces immune activation and oxidative stress. In turn, activated immune response promotes the development and progression of hyperhomocysteinemia. Therefore, hyperhomocysteinemia-induced immunoinflammatory disorders and abnormal immune response may aggravate abnormal immunoinflammatory in PD, leading to more progression of PD severity. Also, inflammatory signaling pathways like nuclear factor kappa B (NF-κB) and nod-like receptor pyrin 3 (NLRP3) inflammasome and other signaling pathways are intricate in the pathogenesis of PD. In conclusion, hyperhomocysteinemia is involved in the development and progression of PD neuropathology either directly via induction degeneration of dopaminergic neurons or indirectly via activation of inflammatory signaling pathways.


Assuntos
Hiper-Homocisteinemia , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Hiper-Homocisteinemia/patologia , Levodopa/metabolismo , Levodopa/farmacologia , Substância Negra/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios Dopaminérgicos/metabolismo
19.
Cell Mol Neurobiol ; 43(7): 3405-3416, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37540395

RESUMO

Hypothyroidism (HPT) HPT could be a risk factor for the development and progression of Alzheimer's disease (AD). In addition, progressive neurodegeneration in AD may affect the metabolism of thyroid hormones (THs) in the brain causing local brain HPT. Hence, the present review aimed to clarify the potential association between HPT and AD. HPT promotes the progression of AD by inducing the production of amyloid beta (Aß) and tau protein phosphorylation with the development of synaptic plasticity and memory dysfunction. Besides, the metabolism of THs is dysregulated in AD due to the accumulation of Aß and tau protein phosphorylation leading to local brain HPT. Additionally, HPT can affect AD neuropathology through various mechanistic pathways including dysregulation of transthyretin, oxidative stress, ER stress, autophagy dysfunction mitochondrial dysfunction, and inhibition of brain-derived neurotrophic factor. Taken together there is a potential link between HPT and AD, as HPT adversely impacts AD neuropathology and the reverse is also true.


Assuntos
Doença de Alzheimer , Hipotireoidismo , Humanos , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Hipotireoidismo/complicações , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia
20.
Amino Acids ; 55(12): 1765-1774, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36939919

RESUMO

Oxidative stress can be a series burden on human health and may lead to many chronic diseases such as diabetes and neurological disorders. The use of natural products to scavenge the reactive oxygen species has attracted the attention of many researchers, to safely manage these conditions with fewer side effects, in available and cost-effective ways. The current study aimed at the isolation and structure elucidation of sweroside from Schenkia spicata (Gentianaceae) and the evaluation of its antioxidant, antidiabetic, neuroprotective, and enzyme inhibitory potential via in vitro and in silico studies. The antioxidant potential was evaluated by a variety of assays as ABTS, CUPRAC and FRAP, showing values of 0.34 ± 0.08, 21.14 ± 0.43, and 12.32 ± 0.20 mg TE/g, respectively, while demonstrating 0.75 ± 0.03 mmol TE/g for phosphomolybdenum (PBD) assay. Acetylcholinestrase (AChE), butyrylcholinesterase (BChE) and tyrosinase inhibitory activities were used to evaluate the neuroprotective effect, while the antidiabetic potential was evaluated by measuring α-amylase and glucosidase inhibitory activities. Results revealed that sweroside showed antioxidant and inhibitory effects on the enzymes tested with the exception of AChE. It demonstrated good tyrosinase inhibitory ability with 55.06 ± 1.85 mg Kojic acid equivalent /g. Regarding the antidiabetic ability, the compound displayed both amylase and glucosidase (0.10 ± 0.01 and 1.54 ± 0.01 mmol Acarbose equivalent/g, respectively) inhibitory activities. Molecular docking studies of sweroside on the active sites of the aforementioned enzymes in addition to NADPH oxidase were performed using Discovery Studio 4.1 software. Results revealed good binding affinities of sweroside to these enzymes mainly through hydrogen bonds and van der Waals interactions. Sweroside can be an important antioxidant and enzyme inhibitory supplement, yet further in vivo and clinical studies are required.


Assuntos
Antioxidantes , Hipoglicemiantes , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Antioxidantes/farmacologia , Antioxidantes/química , Simulação de Acoplamento Molecular , Glicosídeos Iridoides , Butirilcolinesterase , Monofenol Mono-Oxigenase , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glucosidases
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa