Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
BMC Plant Biol ; 24(1): 234, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561674

RESUMO

Parthenium hysterophorus L. (Asteraceae) is a highly prevalent invasive species in subtropical regions across the world. It has recently been seen to shift from low (subtropical) to high (sub-temperate) elevations. Nevertheless, there is a dearth of research investigating the adaptive responses and the significance of leaf functional traits in promoting the expansion to high elevations. The current study investigated the variations and trade-offs among 14 leaf traits (structural, photosynthetic, and nutrient content) of P. hysterophorus across different elevations in the western Himalayas, India. Plots measuring 20 × 40 m were established at different elevations (700 m, 1100 m, 1400 m, and 1800 m) to collect leaf trait data for P. hysterophorus. Along the elevational gradient, significant variations were noticed in leaf morphological parameters, leaf nutrient content, and leaf photosynthetic parameters. Significant increases were observed in the specific leaf area, leaf thickness, and chlorophyll a, total chlorophyll and carotenoid content, as well as leaf nitrogen and phosphorus content with elevation. On the other hand, there were reductions in the amount of chlorophyll b, photosynthetic efficiency, leaf dry matter content, leaf mass per area, and leaf water content. The trait-trait relationships between leaf water content and dry weight and between leaf area and dry weight were stronger at higher elevations. The results show that leaf trait variability and trait-trait correlations are very important for sustaining plant fitness and growth rates in low-temperature, high-irradiance, resource-limited environments at relatively high elevations. To summarise, the findings suggest that P. hysterophorus can expand its range to higher elevations by broadening its functional niche through changes in leaf traits and resource utilisation strategies.


Assuntos
Parthenium hysterophorus , Plantas , Clorofila A , Himalaia , Água , Folhas de Planta
2.
Planta ; 259(6): 130, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647733

RESUMO

MAIN CONCLUSION: This article discusses the complex network of ion transporters, genes, microRNAs, and transcription factors that regulate crop tolerance to saline-alkaline stress. The framework aids scientists produce stress-tolerant crops for smart agriculture. Salinity and alkalinity are frequently coexisting abiotic limitations that have emerged as archetypal mediators of low yield in many semi-arid and arid regions throughout the world. Saline-alkaline stress, which occurs in an environment with high concentrations of salts and a high pH, negatively impacts plant metabolism to a greater extent than either stress alone. Of late, saline stress has been the focus of the majority of investigations, and saline-alkaline mixed studies are largely lacking. Therefore, a thorough understanding and integration of how plants and crops rewire metabolic pathways to repair damage caused by saline-alkaline stress is of particular interest. This review discusses the multitude of resistance mechanisms that plants develop to cope with saline-alkaline stress, including morphological and physiological adaptations as well as molecular regulation. We examine the role of various ion transporters, transcription factors (TFs), differentially expressed genes (DEGs), microRNAs (miRNAs), or quantitative trait loci (QTLs) activated under saline-alkaline stress in achieving opportunistic modes of growth, development, and survival. The review provides a background for understanding the transport of micronutrients, specifically iron (Fe), in conditions of iron deficiency produced by high pH. Additionally, it discusses the role of calcium in enhancing stress tolerance. The review highlights that to encourage biomolecular architects to reconsider molecular responses as auxiliary for developing tolerant crops and raising crop production, it is essential to (a) close the major gaps in our understanding of saline-alkaline resistance genes, (b) identify and take into account crop-specific responses, and (c) target stress-tolerant genes to specific crops.


Assuntos
MicroRNAs , Estresse Fisiológico , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Salinidade , Concentração de Íons de Hidrogênio , Locos de Características Quantitativas/genética , Álcalis , Plantas/metabolismo , Plantas/genética , Adaptação Fisiológica/genética
3.
Int J Phytoremediation ; 25(9): 1106-1115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36264021

RESUMO

This study focused to enhance the cadmium (Cd) phytoextraction efficiency in Solanum nigrum by applying four biodegradable chelants (10 mM)-ethylene glycol tetraacetic acid (EGTA), ethylenediamine disuccinate (EDDS), nitrilotriacetic acid (NTA), and citric acid (CA), when grown in Cd-spiked soil (12 and 48 mg kg-1). Plant height, dry biomass, photosynthetic traits, and metal accumulation varied significantly with Cd and chelant treatments. Cadmium-toxicity resulted in reduction of plant growth and photosynthetic physiology, whereas chelant supplementation alleviated the toxic effect of Cd and increased its accumulation. Tolerance index value increased with addition of chelants in the order: EGTA (1.57-1.63) >EDDS (1.39-1.58) >NTA (1.14-1.50) >CA (1-1.22) compared with Cd (0.46-1.08). Transfer coefficient of root increased with supplementation of EGTA (3.40-3.85), EDDS (3.10-3.40), NTA (2.60-2.90), and CA (1.85-2.29), over Cd-alone (1.61-1.63). Similarly, translocation factor was also increased upon addition of EGTA (0.52-0.73), EDDS (0.35-0.81), NTA (0.38-0.75), and CA (0.53-0.54), compared with Cd-alone (0.36-0.59). Maximum Cd removal (67.67% at Cd12 and 36.05% at Cd48) was observed with supplementation of EGTA. The study concludes that the supplementation of EGTA and EDDS with S. nigrum can be employed as an efficient and environmentally safe technique for reclamation of Cd-contaminated soils.


Apart from the selection of a good hyperaccumulator, the choice of chelant (biodegradable/non-biodegradable) is an important aspect for the successful phytoextraction of metals from contaminated soil. We reported for the first time the potential of ethylene glycol tetraacetic acid (EGTA; a biodegradable chelant) in enhancing Cd phytoextraction by Solanum nigrum. Comparative appraisal of metal extraction efficiency of biodegradable chelants at low (12 mg kg−1) and high (48 mg kg−1) Cd dose depicted that EGTA performed better than EDDS, NTA, and CA (other biodegradable chelants). EGTA supplementation did not induce toxicity in plants; rather it improved metal accumulation, morphology, and photosynthetic physiology.


Assuntos
Poluentes do Solo , Solanum nigrum , Cádmio , Quelantes/farmacologia , Ácido Egtázico , Biodegradação Ambiental , Poluentes do Solo/análise , Ácido Nitrilotriacético , Solo , Ácido Cítrico
4.
J Environ Manage ; 348: 119222, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37862892

RESUMO

Floral and seed traits, their relationships, and responses to abiotic constraints are considered the key determinants of the invasion success of non-native plant species. However, studies evaluating the pattern of floral and seed traits of non-native species in mountain ecosystems are lacking. In this study, we determined (a) whether the floral and seed traits of native and non-native species show similarity or dissimilarity across elevations in mountains, and (b) whether the non-native species follow different allometric patterns compared with native species. Functional variations between native and non-native species were assessed through floral and seed traits: flower count, flower display area, flower mass, specific flower area, seed count, and seed mass across an elevational gradient. Permanent plots (20 × 20 m) were laid at each 100 m elevation rise from 2000 to 4000 m a.s.l. for sampling of herbaceous plant species. The mean values of floral and seed traits such as flower display area, specific flower area, and seed count were significantly higher for non-native species compared to native species. A significant difference in trait values (flower display area, flower mass, seed count, and seed mass) between non-native species and native species was observed along the elevational gradient, except for flower count and specific flower area. The bivariate relationship revealed non-native species to exhibit a stronger relationship between flower display area ∼ flower mass, and flower display area ∼ seed mass traits than the native species. Non-native species showed enhanced reproductive ability under varying environmental conditions along an elevational gradient in mountain ecosystems. Greater flower display area and seed mass at lower elevations and a stronger overall trait-trait relationship among non-native species implied resource investment in pollinator visualization, flower mass, and seed quality over seed quantity. The study concludes that enhanced plasticity and reproductive fitness of floral and seed traits would consequently aid non-native species to adapt, become invasive, and displace native species in mountain ecosystems if the climatic barriers acting on non-native species are reduced with climate change.


Assuntos
Ecossistema , Polinização , Polinização/fisiologia , Espécies Introduzidas , Aptidão Genética , Sementes , Plantas , Flores/fisiologia
5.
Environ Monit Assess ; 195(12): 1526, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996714

RESUMO

Chemically assisted phytoremediation is suggested as an effective approach to amplify the metal-remediating potential of hyperaccumulators. The current study assessed the efficiency of two biodegradable chelants (S,S-ethylenediamine disuccinic acid, EDDS; nitrilotriacetic acid, NTA) in enhancing the remediation of Cd by Coronopus didymus (Brassicaceae). C. didymus growing in Cd-contaminated soil (35-175 mg kg-1 soil) showed increased growth and biomass due to the hormesis effect, and chelant supplementation further increased growth, biomass, and Cd accumulation. A significant interaction with chelants and different Cd concentrations was observed, except for Cd content in roots and Cd content in leaves, which exhibited a non-significant interaction with chelant addition. The effect of the NTA amendment on the root dry biomass and shoot dry biomass was more pronounced than EDDS at all the Cd treatments. Upon addition of EDDS and NTA, bio-concentration factor values were enhanced by ~184-205 and ~ 199-208, respectively. The tolerance index of root and shoot increased over the control upon the addition of chelants, with NTA being better than EDDS. With chelant supplementation, bio-accumulation coefficient values were in the order Cd35 + NTA (~163%) > Cd105 + NTA (~137%) > Cd35 + EDDS (~89%) > Cd175 + NTA (~85%) > Cd105 + EDDS (~62%) > Cd175 + EDDS (~40%). The translocation factor correlated positively (r ≥ 0.8) with tolerance index and Cd accumulation in different plant parts. The study demonstrated that chelant supplementation enhanced Cd-remediation efficiency in C. didymus as depicted by improved plant growth and metal accumulation, and NTA was more effective than EDDS in reclaiming Cd.


Assuntos
Brassicaceae , Poluentes do Solo , Animais , Suínos , Ácido Nitrilotriacético/toxicidade , Ácido Nitrilotriacético/química , Cádmio/toxicidade , Cádmio/química , Monitoramento Ambiental , Etilenodiaminas/farmacologia , Etilenodiaminas/química , Biodegradação Ambiental , Verduras , Solo/química , Poluentes do Solo/análise , Quelantes/química
6.
Environ Monit Assess ; 195(6): 730, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231282

RESUMO

Climate change and anthropogenic pressures have resulted in a significant shift in the invasion susceptibility and frequency of non-native species in mountain ecosystems. Cirsium arvense (L.) Scop. (Family: Asteraceae) is an invasive species that spreads quickly in mountains, especially in the trans-Himalayan region of Ladakh. The current study used a trait-based approach to evaluate the impact of local habitat heterogeneity (soil physico-chemical properties) on C. arvense. Thirteen plant functional traits (root, shoot, leaf, and reproductive traits) of C. arvense were studied in three different habitat types (agricultural, marshy, and roadside). Functional trait variability in C. arvense was higher between, than within habitats (between different populations). All the functional traits interacted with habitat change, except for leaf count and seed mass. Soil properties strongly affect C. arvense's resource-use strategies across habitats. The plant adapted to a resource-poor environment (roadside habitat) by conserving resources and to a resource-rich environment (agricultural and marshy land habitat) by acquiring them. The ability of C. arvense to use resources differently reflects its persistence in introduced habitats. In summary, our study shows that C. arvense invades different habitats in introduced regions through trait adaptations and resource-use strategies in the trans-Himalayan region.


Assuntos
Cirsium , Ecossistema , Monitoramento Ambiental , Plantas , Solo
7.
Environ Monit Assess ; 195(6): 725, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227526

RESUMO

Events of climate change have led to increased aridification, which alters local vegetation patterns and results in the invasion of opportunistic species. Though many studies assess the impact of invasive weeds and aridification at the agronomic level, studies investigating changes in local vegetation are severely lacking. We investigated the impact of the invasive plant Verbesina encelioides (Asteraceae) on the local vegetation composition across different dryland ecosystems in Punjab, northwestern India. Based on the aridity index for the period of 1991-2016, three major dryland ecosystems, i.e., arid, semi-arid, and sub-humid, were found in Punjab. The impact of V. encelioides on local biodiversity was measured in terms of species diversity (using Shannon's diversity index, Simpson's dominance index, Hill's evenness index, and Margalef's richness index), species composition (using non-metric multidimensional scaling based on Bray-Curtis's dissimilarity index), and species proportion in the two invasion classes (uninvaded and invaded) and across the three aridity zones (arid, semi-arid, and sub-humid). The vegetation survey depicted the presence of 53 flowering species belonging to 22 families, including 30 exotics and 23 natives. Verbesina encelioides decreased species diversity and proportion, with a more pronounced impact in arid and semi-arid ecosystems. In contrast, species composition varied between uninvaded and invaded classes only in arid ecosystems. Ecological parameters derived from population statistics (number of individuals) were more drastically affected than those from species abundance data. Since the ecological impacts of V. encelioides were manifested with increased aridification, it is a matter of apprehension under the potential climate change scenario.


Assuntos
Ecossistema , Verbesina , Humanos , Plantas Daninhas , Monitoramento Ambiental , Biodiversidade
8.
Environ Monit Assess ; 193(11): 762, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727237

RESUMO

Plant species exhibiting heavy metal tolerance are instrumental in phytoremediation of metalliferous sites. Most of the time, variations in plant functional traits (PFTs) are overlooked while identifying hyperaccumulators. However, investigating morphological, physiological, and phenological variations can contribute to our knowledge about stress tolerance, and aid in identifying potential hyperaccumulators. In the present study, we investigated variation in morpho-functional traits in Solanum nigrum, a known hyperaccumulator, under lead (Pb) stress. Twenty-one PFTs including 9 above-ground (leaf count, leaf area, specific leaf area, leaf dry matter content, leaf thickness, leaf dry mass, shoot length, stem dry mass, stem diameter), 3 below-ground (root length, root dry mass, and root diameter), 4 reproductive (flower bud count, fruit count, flower count, and fruit dry mass), and 5 photosynthetic traits (total chlorophyll, total carotenoid, chlorophyll a, chlorophyll b, and photosynthetic efficiency) under varying Pb concentrations (500-2000 mg kg-1) were assessed. Pillai's trace test (MANOVA) depicted significant variations in above-ground, below-ground, and photosynthetic traits, whereas reproductive traits did not vary significantly with progressive metal concentration. However, most of the studied traits except flower count, fruit dry mass, and chlorophyll b varied significantly under Pb stress. The study depicts that enhanced PFT's plasticity enables S. nigrum to grow in Pb-contaminated soil effectively without impacting plant fitness. Plasticity of morpho-functional traits, therefore, establishes itself as a resourceful approach in successful identification of phytoremediation capacity of a plant.


Assuntos
Poluentes do Solo , Solanum nigrum , Biodegradação Ambiental , Clorofila A , Monitoramento Ambiental , Folhas de Planta , Poluentes do Solo/toxicidade
9.
Ecotoxicol Environ Saf ; 171: 863-870, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30665103

RESUMO

In the present study, the essential oil (EO) of Hyptis suaveolens has been explored for the first time for its phytotoxic and cytotoxic activities. The phytotoxic activity was assessed against rice (Oryza sativa) and its major troublesome weed, Echinochloa crus-galli, under laboratory and screenhouse conditions. GC-MS analysis revealed EO to be monoterpenoid (~ 79% monoterpenes) in nature with α-phellandrene (22.8%), α-pinene (10.1%) and limonene (8.5%) as the major chemical constituents. The laboratory bioassay showed a complete growth inhibitory effect of EO (≥ 2 mg mL-1) towards the germination and seedling growth of E. crus-galli. However, the inhibitory effect on rice was much less (~40% inhibition). EO caused visible injury, reduction in chlorophyll content, cell viability and ultimately led to complete wilting of E. crus-galli plants. In addition, EO altered the cell division in the meristematic cells of Allium cepa as depicted by ~63% decrease in mitotic index. EO exposure induced several aberrations at chromosomal (c-mitosis, anaphase bridges, chromosomal breakage, vagrant chromosomes, and sticky chromosomes) and cytological level (cytoplasm destruction, peripheral nuclei, and bi-nucleate cells). The present study concludes that H. suaveolens EO possesses phytotoxic activity due to its mito-depressive activity, and could serve as a natural herbicide under sustainable agricultural practices.


Assuntos
Herbicidas , Hyptis/química , Óleos Voláteis/toxicidade , Óleos de Plantas/toxicidade , Monoterpenos Bicíclicos , Divisão Celular , Aberrações Cromossômicas , Monoterpenos Cicloexânicos , Echinochloa/efeitos dos fármacos , Echinochloa/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Herbicidas/química , Herbicidas/toxicidade , Limoneno/análise , Monoterpenos/análise , Óleos Voláteis/química , Oryza/efeitos dos fármacos , Óleos de Plantas/química
10.
Int J Phytoremediation ; 20(5): 483-489, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29020458

RESUMO

Coronopus didymus was examined in terms of its ability to remediate Pb-contaminated soils. Pot experiments were conducted for 4 and 6 weeks to compare the growth, biomass, photosynthetic efficiency, lead (Pb) uptake, and accumulation by C. didymus plants. The plants grew well having no visible toxic symptoms and 100% survivability, exposed to different Pb-spiked soils 100, 350, 1500, and 2500 mg kg-1, supplied as lead nitrate. After 4 weeks, root and shoot concentrations reached 1652 and 502 mg Pb kg-1 DW, while after 6 weeks they increased up to 3091 and 527 mg Pb kg-1 DW, respectively, at highest Pb concentration. As compared to the 4 week experiments, the plant growth and biomass yield were higher after 6 weeks of Pb exposure. However, the chlorophyll content of leaves decreased but only a slight decline in photosynthetic efficiency was observed on exposure to Pb at both 4 and 6 weeks. The Pb accumulation was higher in roots than in the shoots. The bioconcentration factor of Pb was > 1 in all the plant samples, but the translocation factor was < 1. This suggested C. didymus as a good candidate for phytoremediation of Pb-contaminated soils and can be used for future remediation purposes.


Assuntos
Brassicaceae , Poluentes do Solo/análise , Biodegradação Ambiental , Chumbo , Raízes de Plantas/química , Solo
11.
J Sci Food Agric ; 98(13): 5129-5133, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29635793

RESUMO

BACKGROUND: The present investigation reports the stimulating effects of different substituted alkyl silatranes (3a-3e) on the early seedling growth of wheat (Triticum aestivum) and maize (Zea mays). Seeds of these plants were exposed to six different concentrations (0, 10, 50, 100, 200 and 500 µmol L-1 ). The results revealed that different substitutions (3a-3e) had different effects on root and shoot elongation. Silatranes (3a-3e) were synthesized employing microwave irradiation by a solvent-mediated transesterification reaction, thereby reducing reaction times from several hours under conventional reflux conditions to 15 min under microwave irradiation. RESULTS: It was of interest that the effect of these silatranes did not show a dose-dependent relationship but an optimum concentration, which was 100 µmol L-1 for maize and 200 µmol L-1 for wheat. γ-Aminopropyl silatranes (3b and 3e) gave the best results in maize, whereas γ-chloropropyl silatrane (3a) was most efficient for wheat at these optimum concentrations. CONCLUSION: All the synthesized silatranes were effective in promoting root and shoot growth of wheat and maize. Furthermore, an efficient green microwave methodology was successful for the synthesis of silatranes. These observations pave the way for silatranes as efficient plant growth regulators for crops. © 2018 Society of Chemical Industry.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos de Organossilício/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos de Organossilício/síntese química , Reguladores de Crescimento de Plantas/síntese química , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
12.
Ecotoxicol Environ Saf ; 135: 209-215, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27744137

RESUMO

The potential of a wild, unpalatable plant Coronopus didymus was investigated for the first time in terms of its capability to tolerate and accumulate cadmium (Cd) for phytoremediation purposes. A screenhouse experiment for 6 weeks was conducted to evaluate the effect of Cd from 100 to 400mgkg-1 on growth, biomass, photosynthetic apparatus, Cd uptake and accumulation in C. didymus plants. Application of Cd facilitates the growth of the plants whereas at higher levels a slight reduction was noticed. The concentration of Cd in roots and shoots reached a maximum of 867.2 and 864.5mgkg-1 DW respectively, at 400mgkg-1Cd treatment. Cd exposure increased the generation of superoxide anion (O2•-), H2O2 content, MDA level and antioxidative response (SOD, CAT and POD) in roots and shoots of C. didymus. However, a slight decline in SOD and CAT activities were noticed in roots at highest Cd treatment (400mgkg-1). The bioconcentration (BCF) values for all the concentrations were ˃1 and the translocation factor (TF) values were ˂ 1 at lower level but reached 1 at highest Cd concentration. Thus, C. didymus satisfies the conditions required for hyperaccumulator plants and may be practically employed to alleviate Cd from contaminated soils.


Assuntos
Biodegradação Ambiental , Brassicaceae/metabolismo , Cádmio/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Poluentes do Solo/metabolismo , Antioxidantes , Biomassa , Brassicaceae/efeitos dos fármacos , Brassicaceae/crescimento & desenvolvimento , Cádmio/administração & dosagem , Cádmio/toxicidade , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Peroxidase/metabolismo , Fotossíntese/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
13.
Environ Monit Assess ; 186(6): 3379-89, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24477614

RESUMO

Lantana camara, an aromatic shrub, native to tropical America, was introduced into India for ornamental hedging, but later escaped and became a serious invasive weed. This study assessed the quantitative and qualitative status of plant community richness and diversity in areas invaded by L. camara in the Siwalik Hills (Himachal Pradesh, India), and explored allelopathy as a possible mechanism of interference. We measured species diversity, richness and evenness of the vegetation in areas invaded and uninvaded by L. camara. Allelopathic effects of L. camara rhizosphere soil and litter were assessed against two native plants-Achyranthes aspera (a herb) and Albizia lebbeck (a tree). Density, biomass and indices of diversity, richness and evenness were reduced by L. camara, indicating a significant alteration in composition and structure of native communities. Seedling growth of the test species was reduced in L. camara rhizosphere- and litter-amended soil. The inhibitory effect was ameliorated by the addition of activated charcoal, indicating the presence of organic inhibitors (quantified as phenolics) in the soil. Lantana invasion greatly reduces the density and diversity of the vegetation in the invaded area, and chemical interference of its litter plays an important role in invasion.


Assuntos
Monitoramento Ambiental , Espécies Introduzidas , Lantana/crescimento & desenvolvimento , Plantas Daninhas/crescimento & desenvolvimento , Árvores/classificação , Biomassa , Ecossistema , Índia , Rizosfera , Solo/química
14.
Environ Sci Pollut Res Int ; 31(5): 7465-7480, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159189

RESUMO

The proliferation of wireless and other telecommunications equipment brought about by technological advances in the communication industry has substantially increased the radiofrequency radiation levels in the environment. The emphasis is, therefore, placed on investigating the potential impacts of radiofrequency radiation on biota. In this work, the impact of 2850 MHz electromagnetic field radiation (EMF-r) on early development, photosynthetic pigments, and the metabolic profile of two Brassica oleracea L. cultivars (red and green cabbage) was studied. On a daily basis for seven days, seedlings were exposed to homogeneous EMF-r for one, two, and four hours, and observations were carried out at 0-h, 1-h, and 24-h following the final dose. Irrespective of the duration of harvest, exposure to EMF-r resulted in a dose-dependent reduction in both root (from 6.3 cm to 4.0 cm in red; 6.1 cm to 3.8 cm in green) and shoot lengths (from 5.3 cm to â“3.1 cm in red; 5.1 cm to 3.1 cm in green), as well as a decrease in biomass (from 2.9 mg to â“1.1 mg in red; 2.5 to 0.9 mg in green) of the seedlings when compared to control samples. Likewise, the chlorophyll (from 6.09 to â“4.94 mg g-1 d.wt in red; 7.37 to 6.05 mg g-1 d.wt. in green) and carotenoid (from 1.49 to 1.19 mg g-1 d.wt. in red; 1.14 to 0.51 mg g-1 d.wt. in green) contents of both cultivars decreased significantly when compared to the control. Additionally, the contents of phenolic (28.99‒45.52 mg GAE g-1 in red; 25.49‒33.76 mg GAE g-1 in green), flavonoid (21.7‒31.8 mg QE g-1 in red; 12.1‒19.0 mg QE g-1 in green), and anthocyanin (28.8‒43.6 mg per 100 g d.wt. in red; 1.1‒2.6 mg per 100 g d.wt. in green) in both red and green cabbage increased with exposure duration. EMF-r produced oxidative stress in the exposed samples of both cabbage cultivars, as demonstrated by dose-dependent increases in the total antioxidant activity (1.33‒2.58 mM AAE in red; 1.29‒2.22 mM AAE in green), DPPH activity (12.96‒78.33% in red; 9.62‒67.73% in green), H2O2 content (20.0‒77.15 nM g-1 f.wt. in red; 14.28‒64.29 nM g-1 f.wt. in green), and MDA content (0.20‒0.61 nM g-1 f.wt. in red; 0.18‒0.51 nM g-1 f.wt. in green) compared to their control counterparts. The activity of antioxidant enzymes, i.e., superoxide dismutases (3.83‒8.10 EU mg-1 protein in red; 4.19‒7.35 EU mg-1 protein in green), catalases (1.81‒7.44 EU mg-1 protein in red; 1.04‒6.24 EU mg-1 protein in green), and guaiacol peroxidases (14.37‒47.85 EU mg-1 protein in red; 12.30‒42.79 EU mg-1 protein in green), increased significantly compared to their control counterparts. The number of polyphenols in unexposed and EMF-r exposed samples of red cabbage was significantly different. The study concludes that exposure to 2850 MHz EMF-r affects the early development of cabbage seedlings, modifies their photosynthetic pigments, alters polyphenol content, and impairs their oxidative metabolism.


Assuntos
Antioxidantes , Brassica , Antioxidantes/metabolismo , Campos Eletromagnéticos , Peróxido de Hidrogênio/metabolismo , Brassica/metabolismo , Catalase/metabolismo , Polifenóis
15.
Int J Biol Macromol ; 261(Pt 2): 129689, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272428

RESUMO

Piperazine functionalized Schiff bases 4(a-c) were synthesized by a condensation reaction which were thoroughly characterized by using various spectroscopic techniques like 1H NMR, 13C NMR, IR and mass spectrometry. X-ray crystallography was used to analyse synthesized compound 4b. The sensing capability of 4b was investigated towards the tetravalent form of the zirconium ion among other metal ions. The limit of detection and the association constant, were calculated to be 56.4 × 10-8 M and 5.36 × 105 M-1 respectively. The inclusion of additional metal ions had no effect on the selectivity of sensor 4b. The binding mechanism was clarified using 1HNMR spectroscopy, which was further verified computationally, using DFT. Also, the seed germination experiments were performed and effect of compound 4b was analyzed on the seedlings of Zea Mays. An investigation into molecular docking study using (5HQX) protein revealed that it had inhibitory effects on cytokinin oxidase. The protein and ligand effectively associate, as indicated by the lower binding energy of -9.69 kcal/mol. Therefore, compound 4b can act as a good, powerful inhibitor against cytokinin oxidase.


Assuntos
Antioxidantes , Zea mays , Piperazina , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Cobre/química , Bases de Schiff/química , Íons
18.
Protoplasma ; 260(1): 77-87, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35441891

RESUMO

Allelopathy has been proposed as an efficient mechanism of invasion by plant species via growth inhibition and suppression of the resident plant community. Verbesina encelioides (Cav.) Benth. & Hook. f. ex A. Gray (golden crownbeard; Asteraceae), a native of south-western USA and Mexican Plateau, is an emerging troublesome invasive weed species of north-western states of India. We investigated the allelopathic potential of the aqueous extracts prepared from the fresh foliage and leaf litter of V. encelioides on its co-occurring species, Amaranthus viridis and Senna occidentalis. Phytotoxicity bioassay showed concentration-dependent (control < 0.5% < 1% < 2% < 4% extract) inhibition of growth and photosynthetic parameters in the test plants. Both the extracts induced ~ 50% inhibition of germination compared to control at 4% concentration. The maximum synthesis effect (collective effect on seedling length and dry weight) was observed to be - 0.69 and - 0.62 in A. viridis and - 0.68 and - 0.57 in S. occidentalis for the fresh leaf and leaf litter extracts, respectively, at 4% concentration. Also, an antagonistic concentration-dependent impact was observed on the photosynthetic pigments (total chlorophyll and chlorophyll a content) and photosynthetic efficiency. The liquid chromatography-mass spectrometry assay of leaf extracts revealed the presence of 15 allelochemicals including phenolic acids, flavonoids, phytosterols, phytophenols, dicarboxylic acid, guanidine, and triterpenes. Of these, 14 compounds were present in both fresh and leaf litter materials. However, a guanidine derivative, galegine, was only found in the fresh leaf material of the plant. The findings support the novel weapon hypothesis and suggest that V. encelioides competitively excludes its neighboring plants by virtue of allelopathic interference.


Assuntos
Alcaloides , Asteraceae , Verbesina , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Clorofila A
19.
Plant Divers ; 45(5): 611-620, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37936811

RESUMO

Of the various strategies adopted by an invasive plant species for expanding its niche breadth, phenotypic differentiation (either due to plasticity and/or adaptive evolution) is proven to be the most successful. Lately, we studied the persistence of substantial morpho-functional variations within the individuals of alien invasive plant, Parthenium hysterophorus in Chandigarh, India, through field surveys. Based on observed differences, the individuals were categorized into two morphotypes, PA and PB. PA had higher leaf area, leaf biomass, and chlorophyll content as compared with PB. However, PB had a higher stem circumference, stem specific density, twig dry matter content, profuse branching, bigger canopy, and better reproductive output than PA. To substantiate the persistence of intraspecific variations in P. hysterophorus and to deduce the possible genesis of these variations, we propagated both the morphotypes under experimental conditions in winter and summer. Apart from the key morpho-functional differences observed during the field studies, protein and carbohydrate metabolism were studied in leaves and roots of the propagated plants. Differences in plant metabolism were observed only during the early growth period, whereas the morpho-functional traits varied in the mature flowering plants. The effect of growth season was highly significant on all the studied morpho-functional and biochemical parameters (p ≤ 0.05). Parent morphotypes (P) and interactions between morphotypes and seasons significantly affected several growth parameters (p ≤ 0.05). The analyses revealed that the contrasting growth conditions at the time of transplantation and early growth may regulate the phenotype of P. hysterophorus. The pattern of intraspecific variations observed during the study is justified to consider morphotype PA as winter biotype and morphotype PB as summer biotype of P. hysterophorus. The study points towards the role of plasticity or a combination of genetic and environmental (G × E) factors in producing the phenotypic variability observed in the population of P. hysterophorus.

20.
Artigo em Inglês | MEDLINE | ID: mdl-37277587

RESUMO

The present study examined the ability of three naturally occurring low molecular weight organic acids (tartaric, TA; citric, CA; and oxalic, OA) to improve the efficiency of cadmium (Cd) phytoextraction in Lepidium didymus L. (Brassicaceae). The plants were grown in soil containing three different concentrations, i.e., 35, 105, and 175 mg kg-1, of total Cd and 10 mM of TA, CA, and OA. After 6 weeks, plant height, dry biomass, photosynthetic traits, and metal accumulation were determined. All three organic chelants significantly increased the Cd accumulation in L. didymus plants; however, the greatest accumulation was seen with TA (TA > OA > CA). In general, Cd accumulation was the highest in the roots, followed by the stems, and the leaves. Highest BCFStem was observed upon the addition of TA (7.02) and CA (5.90) at Cd35, compared to Cd-alone (3.52) treatment. The BCF was the highest in the stem (7.02) and leaves (3.97) under Cd35 treatment supplemented with TA. The BCFRoot in the plants under different chelant treatments were in the following order: Cd35 + TA (~ 100) > Cd35 + OA (~ 84) > Cd35 + TA (~ 83). The stress tolerance index and translocation factor (root-stem) were maximal at Cd175 with TA and OA supplementation, respectively. The study concludes that L. didymus could be a viable option for Cd-remediation projects, and the addition of TA improved its phytoextraction efficiency.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa