RESUMO
Human InsR, IGF1R, and IRR receptor tyrosine kinases (RTK) of the insulin receptor subfamily play an important role in signaling pathways for a wide range of physiological processes and are directly associated with many pathologies, including neurodegenerative diseases. The disulfide-linked dimeric structure of these receptors is unique among RTKs. Sharing high sequence and structure homology, the receptors differ dramatically in their localization, expression, and functions. In this work, using high-resolution NMR spectroscopy supported by atomistic computer modeling, conformational variability of the transmembrane domains and their interactions with surrounding lipids were found to differ significantly between representatives of the subfamily. Therefore, we suggest that the heterogeneous and highly dynamic membrane environment should be taken into account in the observed diversity of the structural/dynamic organization and mechanisms of activation of InsR, IGF1R, and IRR receptors. This membrane-mediated control of receptor signaling offers an attractive prospect for the development of new targeted therapies for diseases associated with dysfunction of insulin subfamily receptors.
Assuntos
Desenvolvimento de Medicamentos , Receptor de Insulina , Humanos , Domínios Proteicos , Receptor de Insulina/química , Receptor de Insulina/fisiologia , Transdução de SinaisRESUMO
The insulin receptor (IR), insulin-like growth factor 1 receptor (IGF-1R), and insulin receptor-related receptor (IRR) form a mini family of predimerized receptor-like tyrosine kinases. IR and IGF-1R bind to their peptide agonists triggering metabolic and cell growth responses. In contrast, IRR, despite sharing with them a strong sequence homology, has no peptide-like agonist but can be activated by mildly alkaline media. The spatial structure and activation mechanisms of IRR have not been established yet. The present work represents the first account of a structural analysis of a predimerized receptor-like tyrosine kinase by high-resolution atomic force microscopy in their basal and activated forms. Our data suggest that in neutral media, inactive IRR has two conformations, where one is symmetrical and highly similar to the inactive Λ/U-shape of IR and IGF-1R ectodomains, whereas the second is drop-like and asymmetrical resembling the IRR ectodomain in solution. We did not observe complexes of IRR intracellular catalytic domains of the inactive receptor forms. At pH 9.0, we detected two presumably active IRR conformations, Γ-shaped and T-shaped. Both of conformations demonstrated formation of the complex of their intracellular catalytic domains responsible for autophosphorylation. The existence of two active IRR forms correlates well with the previously described positive cooperativity of the IRR activation. In conclusion, our data provide structural insights into the molecular mechanisms of alkali-induced IRR activation under mild native conditions that could be valuable for interpretation of results of IR and IGF-IR structural studies.
Assuntos
Receptor de Insulina/química , Receptor de Insulina/metabolismo , Humanos , Fosforilação , Conformação Proteica , Relação Estrutura-AtividadeRESUMO
Gramicidin A (gA) is a hydrophobic pentadecapeptide readily incorporating into a planar bilayer lipid membrane (BLM), thereby inducing a large macroscopic current across the BLM. This current results from ion-channel formation due to head-to-head transbilayer dimerization of gA monomers with rapidly established monomer-dimer equilibrium. Any disturbance of the equilibrium, e.g., by sensitized photoinactivation of a portion of gA monomers, causes relaxation toward a new equilibrium state. According to previous studies, the characteristic relaxation time of the gA-mediated electric current decreases as the current increases upon elevating the gA concentration in the membrane. Here, we report data on the current relaxation kinetics for gA analogs with N-terminal valine replaced by glycine or tyrosine. Surprisingly, the relaxation time increased rather than decreased upon elevation of the total membrane conductance induced by these gA analogs, thus contradicting the classical kinetic scheme. We developed a general theoretical model that accounts for lateral interaction of monomers and dimers mediated by membrane elastic deformations. The modified kinetic scheme of the gramicidin dimerization predicts the reverse dependence of the relaxation time on membrane conductance for gA analogs, with a decreased dimerization constant that is in a good agreement with our experimental data. The equilibration process may be also modulated by incorporation of other peptides ("impurities") into the lipid membrane.
Assuntos
Gramicidina , Bicamadas Lipídicas , Dimerização , Gramicidina/metabolismo , Canais Iônicos/metabolismo , PeptídeosRESUMO
Insulin receptor-related receptor (IRR) is a receptor tyrosine kinase of the insulin receptor family and functions as an extracellular alkali sensor that controls metabolic alkalosis in the regulation of the acid-base balance. In the present work, we sought to analyze structural features of IRR by comparing them with those of the insulin receptor, which is its closest homolog but does not respond to pH changes. Using small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM), we investigated the overall conformation of the recombinant soluble IRR ectodomain (ectoIRR) at neutral and alkaline pH. In contrast to the well-known inverted U-shaped (or λ-shaped) conformation of the insulin receptor, the structural models reconstructed at different pH values revealed that the ectoIRR organization has a "droplike" shape with a shorter distance between the fibronectin domains of the disulfide-linked dimer subunits within ectoIRR. We detected no large-scale pH-dependent conformational changes of ectoIRR in both SAXS and AFM experiments, an observation that agreed well with previous biochemical and functional analyses of IRR. Our findings indicate that ectoIRR's sensing of alkaline conditions involves additional molecular mechanisms, for example engagement of receptor juxtamembrane regions or the surrounding lipid environment.
Assuntos
Álcalis/metabolismo , Multimerização Proteica , Receptor de Insulina/química , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Modelos Moleculares , Domínios Proteicos , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios XRESUMO
The theory of elasticity of lipid membranes is used widely to describe processes of cell membrane remodeling. Classically, the functional of a membrane's elastic energy is derived under assumption of small deformations; the membrane is considered as an infinitely thin film. This functional is quadratic on membrane surface curvature, with half of the splay modulus as its proportionality coefficient; it is generally applicable for small deformations only. Any validity of this functional for the regime of strong deformations should be verified experimentally. Recently, research using molecular dynamics simulations challenged the validity of this classic, linear model, i.e. the constancy of the splay modulus for strongly bent membranes. Here we demonstrate that the quadratic energy functional still can be applied for calculation of the elastic energy of strongly deformed membranes without introducing higher order terms with additional elastic moduli, but only if applied separately for each lipid monolayer. For cylindrical membranes, both classic and monolayerwise models yield equally accurate results. For cylindrical deformations we experimentally show that the elastic energy of lipid monolayers is additive: a low molecular weight solvent leads to an approximately twofold decrease in the membrane bending stiffness. Accumulation of solvent molecules in the inner monolayer of a membrane cylinder can explain these results, as the solvent partially prevents lipid molecules from splaying there. Thus, the linear theory of elasticity can be expanded through the range from weak to strong deformations-its simplicity and physical transparency describe various membrane phenomena.
Assuntos
Membrana Celular/química , Lipídeos de Membrana/química , Elasticidade , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Solventes/químicaRESUMO
Archaeal lipids ensure unprecedented stability of archaea membranes in extreme environments. Here, we incorporate a characteristic structural feature of an archaeal lipid, the cyclopentane ring, into hydrocarbon chains of a short-chain (C12) phosphatidylcholine to explore whether the insertion would allow such a lipid (1,2-di-(3-(3-hexylcyclopentyl)-propanoate)-sn-glycero-3-phosphatidylcholine, diC12cp-PC) to form stable bilayers at room temperature. According to fluorescence-based assays, in water diC12cp-PC formed liquid-crystalline bilayers at room temperature. Liposomes produced from diC12cp-PC retained calcein for over a week when stored at +4 °C. diC12cp-PC could also form model bilayer lipid membranes that were by an order of magnitude more stable to electrical breakdown than egg PC membranes. Molecular dynamics simulation showed that the cyclopentane fragment fixes five carbon atoms (or four C-C bonds), which is compensated by the higher mobility of the rest of the chain. This was found to be the reason for the remarkable stability of the diC12cp-PC bilayer: restricted conformational mobility of a chain segment increases the membrane bending modulus (compared to a normal hydrocarbon chain of the same length). Here, higher stiffness practically does not affect the line tension of a membrane pore edge. Rather it makes it more difficult for diC12cp-PC to rearrange in order to line the edge of a hydrophilic pore; therefore, fewer pores are formed.
Assuntos
Archaea/química , Ciclopentanos/química , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Fosfolipídeos/química , Eletricidade/efeitos adversos , Bicamadas Lipídicas/efeitos da radiação , Lipossomos/química , Lipossomos/efeitos da radiação , Conformação Molecular/efeitos da radiação , Água/químicaRESUMO
Enveloped viruses include the most dangerous human and animal pathogens, in particular coronavirus, influenza virus, and human immunodeficiency virus (HIV). For these viruses, receptor binding and entry are accomplished by a single viral envelope protein (termed the fusion protein), the structural changes of which trigger the remodeling and merger of the viral and target cellular membranes. The number of fusion proteins required for fusion activity is still under debate, and several studies report this value to range from 1 to 9 for type I fusion proteins. Here, we consider the earliest stage of viral fusion based on the continuum theory of membrane elasticity. We demonstrate that membrane deformations induced by the oblique insertion of amphipathic fusion peptides mediate the lateral interaction of these peptides and drive them to form into a symmetric fusion rosette. The pulling force produced by the structural rearrangements of the fusion protein ectodomains gives additional torque, which deforms the membrane and additionally stabilizes the symmetric fusion rosette, thus allowing a reduction in the number of fusion peptides needed for fusion. These findings can resolve the large range of published cooperativity indices for HIV, influenza, and other type I fusion proteins.
Assuntos
Infecções por HIV/virologia , HIV/fisiologia , Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Peptídeos/química , Proteínas do Envelope Viral/química , Anisotropia , Membrana Celular/virologia , Humanos , Modelos Teóricos , Domínios Proteicos , Internalização do VírusRESUMO
Starting from fertilization, through tissue growth, hormone secretion, synaptic transmission, and sometimes morbid events of carcinogenesis and viral infections, membrane fusion regulates the whole life of high organisms. Despite that, a lot of fusion processes still lack well-established models and even a list of main actors. A merger of membranes requires their topological rearrangements controlled by elastic properties of a lipid bilayer. That is why continuum models based on theories of membrane elasticity are actively applied for the construction of physical models of membrane fusion. Started from the view on the membrane as a structureless film with postulated geometry of fusion intermediates, they developed along with experimental and computational techniques to a powerful tool for prediction of the whole process with molecular accuracy. In the present review, focusing on fusion processes occurring in eukaryotic cells, we scrutinize the history of these models, their evolution and complication, as well as open questions and remaining theoretical problems. We show that modern approaches in this field allow continuum models of membrane fusion to stand shoulder to shoulder with molecular dynamics simulations, and provide the deepest understanding of this process in multiple biological systems.
Assuntos
Membrana Celular/fisiologia , Bicamadas Lipídicas/química , Fusão de Membrana , Simulação de Dinâmica Molecular , Animais , Elasticidade , Humanos , Modelos Biológicos , Distribuição NormalRESUMO
Membrane fusion mediates multiple vital processes in cell life. Specialized proteins mediate the fusion process, and a substantial part of their energy is used for topological rearrangement of the membrane lipid matrix. Therefore, the elastic parameters of lipid bilayers are of crucial importance for fusion processes and for determination of the energy barriers that have to be crossed for the process to take place. In the case of fusion of enveloped viruses (e.g., influenza) with endosomal membrane, the interacting membranes are in an acidic environment, which can affect the membrane's mechanical properties. This factor is often neglected in the analysis of virus-induced membrane fusion. In the present work, we demonstrate that even for membranes composed of zwitterionic lipids, changes of the environmental pH in the physiologically relevant range of 4.0 to 7.5 can affect the rate of the membrane fusion notably. Using a continual model, we demonstrated that the key factor defining the height of the energy barrier is the spontaneous curvature of the lipid monolayer. Changes of this parameter are likely to be caused by rearrangements of the polar part of lipid molecules in response to changes of the pH of the aqueous solution bathing the membrane.
Assuntos
Fosfatidilcolinas/química , Endossomos/virologia , Humanos , Concentração de Íons de Hidrogênio , Influenza Humana , Bicamadas Lipídicas/químicaRESUMO
Sphingomyelin- and cholesterol- enriched membrane domains, commonly referred to as "rafts" play a crucial role in a large number of intra- and intercellular processes. Recent experiments suggest that not only the volumetric inhomogeneity of lipid distribution in rafts, but also the arrangement of the 1D boundary between the raft and the surrounding membrane is important for the membrane-associated processes. The reason is that the boundary preferentially recruits different peptides, such as HIV (human immunodeficiency virus) fusion peptide. In the present work, we report a theoretical investigation of mechanisms of influence of the raft boundary arrangement upon virus-induced membrane fusion. We theoretically predict that the raft boundary can act as an attractor for viral fusion peptides, which preferentially distribute into the vicinity of the boundary, playing the role of 'line active components' of the membrane ('linactants'). We have calculated the height of the fusion energy barrier and demonstrated that, in the case of fusion between HIV membrane and the target cell, presence of the raft boundary in the vicinity of the fusion site facilitates fusion. The results we obtained can be further generalized to be applicable to other enveloped viruses.
Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Fusão de Membrana , Microdomínios da Membrana/metabolismo , Internalização do Vírus , Algoritmos , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Modelos BiológicosRESUMO
Fusion of cellular membranes during normal biological processes, including proliferation, or synaptic transmission, is mediated and controlled by sophisticated protein machinery ensuring the preservation of the vital barrier function of the membrane throughout the process. Fusion of virus particles with host cell membranes is more sparingly arranged and often mediated by a single fusion protein, and the virus can afford to be less discriminative towards the possible different outcomes of fusion attempts. Formation of leaky intermediates was recently observed in some fusion processes, and an alternative trajectory of the process involving formation of π-shaped structures was suggested. In this study, we apply the methods of elasticity theory and Lagrangian formalism augmented by phenomenological and molecular geometry constraints and boundary conditions to investigate the traits of this trajectory and the drivers behind the choice of one of the possible scenarios depending on the properties of the system. The alternative pathway proved to be a dead end, and, depending on the parameters of the participating membranes and fusion proteins, the system can either reversibly enter the corresponding "leaky" configuration or be trapped in it. A parametric study in the biologically relevant range of variables emphasized the fusion protein properties crucial for the choice of the fusion scenario.
Assuntos
Membrana Celular/química , Fusão de Membrana , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Algoritmos , Animais , Membrana Celular/fisiologia , Elasticidade , Humanos , Modelos Biológicos , Proteínas Virais de Fusão/química , Vírus/químicaRESUMO
Evolution from precellular supramolecular assemblies to cellular world originated from the ability to make a barrier between the interior of the cell and the outer environment. This step resulted from the possibility to form a membrane, which preserves the cell like a wall of the castle. However, every castle needs gates for trading, i.e. in the case of cell, for controlled exchange of substances. These 'gates' should have the mechanism of opening and closing, guards, entry rules, and so on. Different structures are known to be able to make membrane permeable to various substances, from ions to macromolecules. They are amphipathic peptides, their assemblies, sophisticated membrane channels with numerous transmembrane domains, etc. Upon evolving, cellular world preserved and selected many variants, which, finally, have provided both prokaryotes and eukaryotes with highly selective and regulated ion channels. However, various simpler variants of ion channels are found in viruses. Despite the origin of viruses is still under debates, they have evolved parallelly with the cellular forms of life. Being initial form of the enveloped organisms, reduction of protocells or their escaped parts, viruses might be fingerprints of the evolutionary steps of cellular structures like ion channels. Therefore, viroporins may provide us a necessary information about selection between high functionality and less complex structure in supporting all the requirements for controlled membrane permeability. In this review we tried to elucidate these compromises and show the possible way of the evolution of ion channels, from peptides to complex multi-subunit structures, basing on viral examples.
RESUMO
Antimicrobial peptides (AMPs) are believed to be a prominent alternative to the common antibiotics. However, despite decades of research, there are still no good clinical examples of peptide-based antimicrobial drugs for system application. The main reasons are loss of activity in the human body, cytotoxicity, and low selectivity. To overcome these challenges, a well-established structure-function relationship for AMPs is critical. In the present study, we focused on the well-known examples of melittin and magainin to investigate in detail the initial stages of AMP interaction with lipid membranes at low peptide-to-lipid ratio. By combining the patch-clamp technique with the bioelectrochemical method of intramembrane field compensation, we showed that these peptides interact with the membrane in different ways: melittin inserts deeper into the lipid bilayer than magainin. This difference led to diversity in pore formation. While magainin, after a threshold concentration, formed the well-known toroidal pores, allowing the translocation of the peptide through the membrane, melittin probably induced predominantly pure lipidic pores with a very low rate of peptide translocation. Thus, our results shed light on the early stages of peptide-membrane interactions and suggest new insights into the structure-function relationship of AMPs based on the depth of their membrane insertion.
Assuntos
Bicamadas Lipídicas , Magaininas , Meliteno , Meliteno/química , Meliteno/metabolismo , Meliteno/farmacologia , Magaininas/química , Magaininas/farmacologia , Magaininas/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/química , HumanosRESUMO
The binding of the HIV-1 Gag polyprotein to the plasma membrane is a critical step in viral replication. The association with membranes depends on the lipid composition, but its mechanisms remain unclear. Here, we report the binding of non-myristoylated Gag to lipid membranes of different lipid compositions to dissect the influence of each component. We tested the contribution of phosphatidylserine, PI(4,5)P2, and cholesterol to membrane charge density and Gag affinity to membranes. Taking into account the influence of the membrane surface potential, we quantitatively characterized the adsorption of the protein onto model lipid membranes. The obtained Gag binding constants appeared to be the same regardless of the membrane charge. Furthermore, Gag adsorbed on uncharged membranes, suggesting a contribution of hydrophobic forces to the protein-lipid interaction. Charge-charge interactions resulted in an increase in protein concentration near the membrane surface. Lipid-specific interactions were observed in the presence of cholesterol, resulting in a two-fold increase in binding constants. The combination of cholesterol with PI(4,5)P2 showed cooperative effects on protein adsorption. Thus, we suggest that the affinity of Gag to lipid membranes results from a combination of electrostatic attraction to acidic lipids, providing different protein concentrations near the membrane surface, and specific hydrophobic interactions.
Assuntos
Colesterol , HIV-1 , Produtos do Gene gag do Vírus da Imunodeficiência Humana , HIV-1/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Colesterol/metabolismo , Colesterol/química , Ligação Proteica , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química , Membrana Celular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Adsorção , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Propriedades de Superfície , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química , HumanosRESUMO
The SARS-CoV-2 E protein is an enigmatic viral structural protein with reported viroporin activity associated with the acute respiratory symptoms of COVID-19, as well as the ability to deform cell membranes for viral budding. Like many viroporins, the E protein is thought to oligomerize with a well-defined stoichiometry. However, attempts to determine the structure of the protein complex have yielded inconclusive results, suggesting several possible oligomers, ranging from dimers to pentamers. Here, we combined patch-clamp, confocal fluorescence microscopy on giant unilamellar vesicles, and atomic force microscopy to show that E protein can exhibit two modes of membrane activity depending on membrane lipid composition. In the absence or the presence of a low content of cholesterol, the protein forms short-living transient pores, which are seen as semi-transmembrane defects in a membrane by atomic force microscopy. Approximately 30 mol% cholesterol is a threshold for the transition to the second mode of conductance, which could be a stable pentameric channel penetrating the entire lipid bilayer. Therefore, the E-protein has at least two different types of activity on membrane permeabilization, which are regulated by the amount of cholesterol in the membrane lipid composition and could be associated with different types of protein oligomers.
Assuntos
Colesterol , Proteínas do Envelope de Coronavírus , Microscopia de Força Atômica , SARS-CoV-2 , Colesterol/metabolismo , Colesterol/química , SARS-CoV-2/metabolismo , Humanos , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas do Envelope de Coronavírus/química , Membrana Celular/metabolismo , Lipossomas Unilamelares/metabolismo , Lipossomas Unilamelares/química , COVID-19/metabolismo , COVID-19/virologia , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Proteínas Viroporinas/metabolismo , Técnicas de Patch-Clamp , Multimerização Proteica , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/químicaRESUMO
Human immunodeficiency virus (HIV) assembly at an infected cell's plasma membrane requires membrane deformation to organize the near-spherical shape of an immature virus. While the cellular expression of HIV Gag is sufficient to initiate budding of virus-like particles, how Gag generates membrane curvature is not fully understood. Using highly curved lipid nanotubes, we have investigated the physicochemical basis of the membrane activity of recombinant nonmyristoylated Gag-Δp6. Gag protein, upon adsorption onto the membrane, resulted in the shape changes of both charged and uncharged nanotubes. This shape change was more pronounced in the presence of charged lipids, especially phosphatidylinositol bisphosphate (PI(4,5)P2). We found that Gag modified the interfacial tension of phospholipid bilayer membranes, as judged by comparison with the effects of amphipathic peptides and nonionic detergent. Bioinformatic analysis demonstrated that a region of the capsid and SP1 domains junction of Gag is structurally similar to the amphipathic peptide magainin-1. This region accounts for integral changes in the physical properties of the membrane upon Gag adsorption, as we showed with the synthetic CA-SP1 junction peptide. Phenomenologically, membrane-adsorbed Gag could diminish the energetic cost of increasing the membrane area in a way similar to foam formation. We propose that Gag acts as a surface-active substance at the HIV budding site that softens the membrane at the place of Gag adsorption, lowering the energy for membrane bending. Finally, our experimental data and theoretical considerations give a lipid-centric view and common mechanism by which proteins could bend membranes, despite not having intrinsic curvature in their molecular surfaces or assemblies.
Assuntos
Membrana Celular , HIV-1 , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana , HIV-1/fisiologia , HIV-1/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Membrana Celular/química , Humanos , Bicamadas Lipídicas/química , Tensoativos/química , Tensoativos/farmacologia , Nanotubos/químicaRESUMO
The structural study of plant viruses is of great importance to reduce the damage caused by these agricultural pathogens and to support their biotechnological applications. Nowadays, X-ray crystallography, NMR spectroscopy and cryo-electron microscopy are well accepted methods to obtain the 3D protein structure with the best resolution. However, for large and complex supramolecular structures such as plant viruses, especially flexible filamentous ones, there are a number of technical limitations to resolving their native structure in solution. In addition, they do not allow us to obtain structural information about dynamics and interactions with physiological partners. For these purposes, small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM) are well established. In this review, we have outlined the main principles of these two methods and demonstrated their advantages for structural studies of plant viruses of different shapes with relatively high spatial resolution. In addition, we have demonstrated the ability of AFM to obtain information on the mechanical properties of the virus particles that are inaccessible to other experimental techniques. We believe that these under-appreciated approaches, especially when used in combination, are valuable tools for studying a wide variety of helical plant viruses, many of which cannot be resolved by classical structural methods.
Assuntos
Vírus de Plantas , Difração de Raios X , Microscopia Crioeletrônica , Espalhamento a Baixo Ângulo , Microscopia de Força Atômica/métodos , Raios X , Cristalografia por Raios XRESUMO
Proton relay between interfacial water molecules allows rapid two-dimensional diffusion. An energy barrier, ΔGr, opposes proton-surface-to-bulk release. The ΔGr-regulating mechanism thus far has remained unknown. Here, we explored the effect interfacial charges have on ΔGr's enthalpic and entropic constituents, ΔGH and ΔGS, respectively. A light flash illuminating a micrometer-sized membrane patch of a free-standing planar lipid bilayer released protons from an adsorbed hydrophobic caged compound. A lipid-anchored pH-sensitive dye reported protons' arrival at a distant membrane patch. Introducing net-negative charges to the bilayer doubled ΔGH, while positive net charges decreased ΔGH. The accompanying variations in ΔGS compensated for the ΔGH modifications so that ΔGr was nearly constant. The increase in the entropic component of the barrier is most likely due to the lower number and strength of hydrogen bonds known to be formed by positively charged residues as compared to negatively charged moieties. The resulting high ΔGr ensured interfacial proton diffusion for all measured membranes. The observation indicates that the variation in membrane surface charge alone is a poor regulator of proton traffic along the membrane surface.
Assuntos
Bicamadas Lipídicas , Prótons , Bicamadas Lipídicas/química , Membranas , Difusão , TermodinâmicaRESUMO
One of the hallmarks of Alzheimer's disease (AD) is the accumulation of amyloid beta (Aß) peptides in the brain. The processing of amyloid precursor protein (APP) into Aß is dependent on the location of APP in the membrane, membrane lipid composition and, possibly, presence of lipid rafts. In this study, we used atomic force microscopy (AFM) to investigate the interaction between transmembrane fragment APP672-726 (corresponding to Aß1-55) and its amyloidogenic mutant L723P with membranes combining liquid-ordered and liquid-disordered lipid phases. Our results demonstrated that most of the APP672-726 is located either in the liquid-disordered phase or at the boundary between ordered and disordered phases, and hardly ever in rafts. We did not notice any major changes in the domain structure induced by APP672-726. In membranes without cholesterol APP672-726, and especially its amyloidogenic mutant L723P formed annular structures and clusters rising above the membrane. Presence of cholesterol led to the appearance of concave membrane regions up to 2 nm in depth that were deeper for wild type APP672-726. Thus, membrane cholesterol regulates changes in membrane structure and permeability induced by APP that might be connected with further formation of membrane pores.
RESUMO
Lateral transport and release of protons at the water-membrane interface play crucial roles in cell bioenergetics. Therefore, versatile techniques need to be developed for investigating as well as clarifying the main features of these processes at the molecular level. Here, we experimentally measured the kinetics of binding of protons released from the photoactivated compound sodium 2-methoxy-5-nitrophenyl sulfate (MNPS) at the surface of a bilayer lipid membrane (BLM). We developed a theoretical model of this process describing the damage of MNPS coupled with the release of the protons at the membrane surface, as well as the exchange of MNPS molecules and protons between the membrane and solution. We found that the total change in the boundary potential difference across the membrane, ∆Ïb, is the sum of opposing effects of adsorption of MNPS anions and release of protons at the membrane-water interface. Steady-state change in the ∆Ïb due to protons decreased with the concentration of the buffer and increased with the pH of the solution. The change in the concentration of protons evaluated from measurements of ∆Ïb was close to that in the unstirred water layer near the BLM. This result, as well as rate constants of the proton exchange between the membrane and the bulk solution, indicated that the rate-limiting step of the proton surface to bulk release is the change in the concentration of protons in the unstirred layer. This means that the protons released from MNPS remain in equilibrium between the BLM surface and an adjacent water layer.