Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2321600121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771881

RESUMO

Antigen presentation via major histocompatibility complex class I (MHC-I) molecules is essential for surveillance by the adaptive immune system. Central to this process is the peptide-loading complex (PLC), which translocates peptides from the cytosol to the endoplasmic reticulum and catalyzes peptide loading and proofreading of peptide-MHC-I (pMHC-I) complexes. Despite its importance, the impact of individual PLC components on the presented pMHC-I complexes is still insufficiently understood. Here, we used stoichiometrically defined antibody-nanobody complexes and engineered soluble T cell receptors (sTCRs) to quantify different MHC-I allomorphs and defined pMHC-I complexes, respectively. Thereby, we uncovered distinct effects of individual PLC components on the pMHC-I surface pool. Knockouts of components of the PLC editing modules, namely tapasin, ERp57, or calreticulin, changed the MHC-I surface composition to a reduced proportion of HLA-A*02:01 presentation compensated by a higher ratio of HLA-B*40:01 molecules. Intriguingly, these knockouts not only increased the presentation of suboptimally loaded HLA-A*02:01 complexes but also elevated the presentation of high-affinity peptides overexpressed in the cytosol. Our findings suggest that the components of the PLC editing module serve a dual role, acting not only as peptide proofreaders but also as limiters for abundant peptides. This dual function ensures the presentation of a broad spectrum of antigenic peptides.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Peptídeos , Apresentação de Antígeno/imunologia , Humanos , Peptídeos/metabolismo , Peptídeos/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Calreticulina/metabolismo , Calreticulina/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Retículo Endoplasmático/metabolismo
2.
Cancer Immunol Immunother ; 72(9): 3029-3043, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37310433

RESUMO

Targeting co-stimulatory receptors promotes the activation and effector functions of anti-tumor lymphocytes. 4-1BB (CD137/TNFSF9), a member of the tumor necrosis factor receptor superfamily (TNFR-SF), is a potent co-stimulatory receptor that plays a prominent role in augmenting effector functions of CD8+ T cells, but also CD4+ T cells and NK cells. Agonistic antibodies against 4-1BB have entered clinical trials and shown signs of therapeutic efficacy. Here, we have used a T cell reporter system to evaluate various formats of 4-1BBL regarding their capacity to functionally engage its receptor. We found that a secreted 4-1BBL ectodomain harboring a trimerization domain derived from human collagen (s4-1BBL-TriXVIII) is a strong inducer of 4-1BB co-stimulation. Similar to the 4-1BB agonistic antibody urelumab, s4-1BBL-TriXVIII is very potent in inducing CD8+ and CD4+ T cell proliferation. We provide first evidence that s4-1BBL-TriXVIII can be used as an effective immunomodulatory payload in therapeutic viral vectors. Oncolytic measles viruses encoding s4-1BBL-TriXVIII significantly reduced tumor burden in a CD34+ humanized mouse model, whereas measles viruses lacking s4-1BBL-TriXVIII were not effective. Natural soluble 4-1BB ligand harboring a trimerization domain might have utility in tumor therapy especially when delivered to tumor tissue as systemic administration might induce liver toxicity.


Assuntos
Ligante 4-1BB , Linfócitos T CD8-Positivos , Camundongos , Animais , Humanos , Ligante 4-1BB/genética , Agentes de Imunomodulação , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral , Células Matadoras Naturais
3.
Immunology ; 166(4): 507-521, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35596615

RESUMO

NKG2A has emerged as a new immunotherapy target and its blockade with the novel immune checkpoint inhibitor (ICI) monalizumab can boost both NK cell and CD8+ T cell responses. NKG2A forms heterodimers with CD94 and binds to the human non-classical MHC class I molecule HLA-E. HLA-E forms complexes with a limited set of peptides mainly derived from the leader sequences of the classical MHC class I molecules (HLA-A, HLA-B and HLA-C) and the non-classical class I paralogue HLA-G, and it is well established that the interaction between CD94/NKG2x receptors and its ligand HLA-E is peptide-sensitive. Here, we have evaluated peptide dependence of NKG2A-mediated inhibition and the efficiency of interference by monalizumab in a transcriptional T cell reporter system. NKG2A inhibition was mediated by cell-expressed HLA-E molecules stably presenting disulfate-trapped peptide ligands. We show that different HLA-class I leader peptides mediate varying levels of inhibition. We have used NKG2A/NKG2C chimeric receptors to map the binding site of NKG2A and NKG2C blocking antibodies. Furthermore, we determined the functional EC50 values of blocking NKG2A antibodies and show that they greatly depend on the HLA-leader peptide presented by HLA-E. Monalizumab was less effective in augmenting NK cell-mediated killing of target cells displaying HLA-G peptide on HLA-E, than cells expressing HLA-E complexed with HLA-A, HLA-B and HLA-C peptides. Our results indicate that peptides displayed by HLA-E molecules on tumour cells might influence the effectivity of NKG2A-ICI therapy and potentially suggest novel approaches for patient stratification, for example, based on tumoral HLA-G levels.


Assuntos
Antígenos HLA-C , Antígenos HLA-G , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Antígenos HLA-A , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Ligantes , Subfamília D de Receptores Semelhantes a Lectina de Células NK , Peptídeos , Antígenos HLA-E
4.
Eur J Immunol ; 51(6): 1361-1364, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33954999

RESUMO

Therapeutic antibodies that block PD-1-mediated inhibition of T cells have revolutionized cancer therapy. Murine cancer models are an essential tool for testing the efficacy of PD-1 blockers alone or in combination with other treatments. Depending on the isotype of the antibody and the host species, blocking antibodies can also exert cytotoxic activity towards cells expressing the target molecule. In the current issue of the European Journal of Immunology [Eur. J. Immunol. 2021. 51: 1473-1481], Polesso et al. demonstrate that depletion of PD-1+ T cells by "blocking" PD-1 antibodies can greatly impact the outcome of preclinical immunotherapy experiments. Whereas some PD-1 antibodies promoted activation and proliferation of PD-1-expressing murine T cells, the authors report that administration of a particular PD-1 antibody can result in a significant loss of antigen-specific CD8 T cells in different in vivo models. These findings once more highlight that a comprehensive characterization of antibodies is warranted to avoid misinterpretation of immunotherapy studies.


Assuntos
Antineoplásicos , Receptor de Morte Celular Programada 1 , Animais , Anticorpos Bloqueadores , Linfócitos T CD8-Positivos , Imunoterapia , Camundongos
5.
Eur J Immunol ; 51(3): 721-733, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33180337

RESUMO

Costimulatory signals potently promote T-cell proliferation and effector function. Agonistic antibodies targeting costimulatory receptors of the TNFR family, such as 4-1BB and CD27, have entered clinical trials in cancer patients. Currently there is limited information how costimulatory signals regulate antigen-specific but also bystander activation of human CD8 T cells. Engineered antigen presenting cells (eAPC) efficiently presenting several common viral epitopes on HLA-A2 in combination with MHC class I tetramer staining were used to investigate the impact of costimulatory signals on human CD8 T-cell responses. CD28 costimulation potently augmented the percentage and number of antigen-reactive CD8 T cells, whereas eAPC expressing 4-1BB-ligand induced bystander proliferation of CD8 T cells and massive expansion of NK cells. Moreover, the 4-1BB agonist urelumab similarly induced bystander proliferation of CD8 T cells and NK cells in a dose-dependent manner. However, the promotion of bystander CD8 T-cell responses is not a general attribute of costimulatory TNF receptor superfamily (TNFRSF) members, since CD27 signals enhanced antigen-specific CD8 T cells responses without promoting significant bystander activation. Thus, the differential effects of costimulatory signals on the activation of human bystander CD8 T cells should be taken into account when costimulatory pathways are harnessed for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária/imunologia , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Genes MHC Classe I/imunologia , Humanos , Células K562 , Células Matadoras Naturais/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
6.
Eur J Immunol ; 51(12): 3176-3185, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34626426

RESUMO

The soluble cytoplasmic tail of CD45 (ct-CD45) is a cleavage fragment of CD45, that is generated during the activation of human phagocytes. Upon release to the extracellular space, ct-CD45 binds to human T cells and inhibits their activation in vitro. Here, we studied the potential role of TLR4 as a receptor for ct-CD45. Treatment of Jurkat TLR4/CD14 reporter cells with ct-CD45 induced the upregulation of the reporter gene NFκB-eGFP and could be blocked by inhibitors of TLR4 signaling. Conversely, ct-CD45 did not promote the NFκB-controlled eGFP induction in reporter cells expressing TLR1, TLR2, and TLR6 transgenes and did not lead to the activation of the transcription factors NFκB, AP-1, and NFAT in a Jurkat reporter cell line expressing endogenous TLR5. Moreover, ct-CD45 binds to recombinant TLR4 in an in vitro assay and this association was reduced in the presence of oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine. Blockade of TLR4 with mAb HTA125 partially reversed the ct-CD45-mediated inhibition of T-cell proliferation. Interestingly, targeting of TLR4 with mAb W7C11 also suppressed T-cell proliferation. In summary, the results of this study demonstrate that ct-CD45 acts via a noncanonical TLR4 activation pathway on T cells, which modulates TCR signaling.


Assuntos
Proliferação de Células , Antígenos Comuns de Leucócito/imunologia , Ativação Linfocitária , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Receptor 4 Toll-Like/imunologia , Humanos , Células Jurkat
7.
J Neuroinflammation ; 19(1): 305, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528616

RESUMO

Saturated very long-chain fatty acids (VLCFA, ≥ C22), enriched in brain myelin and innate immune cells, accumulate in X-linked adrenoleukodystrophy (X-ALD) due to inherited dysfunction of the peroxisomal VLCFA transporter ABCD1. In its severest form, X-ALD causes cerebral myelin destruction with infiltration of pro-inflammatory skewed monocytes/macrophages. How VLCFA levels relate to macrophage activation is unclear. Here, whole transcriptome sequencing of X-ALD macrophages indicated that VLCFAs prime human macrophage membranes for inflammation and increased expression of factors involved in chemotaxis and invasion. When added externally to mimic lipid release in demyelinating X-ALD lesions, VLCFAs did not activate toll-like receptors in primary macrophages. In contrast, VLCFAs provoked pro-inflammatory responses through scavenger receptor CD36-mediated uptake, cumulating in JNK signalling and expression of matrix-degrading enzymes and chemokine release. Following pro-inflammatory LPS activation, VLCFA levels increased also in healthy macrophages. With the onset of the resolution, VLCFAs were rapidly cleared in control macrophages by increased peroxisomal VLCFA degradation through liver-X-receptor mediated upregulation of ABCD1. ABCD1 deficiency impaired VLCFA homeostasis and prolonged pro-inflammatory gene expression upon LPS treatment. Our study uncovers a pivotal role for ABCD1, a protein linked to neuroinflammation, and associated peroxisomal VLCFA degradation in regulating macrophage plasticity.


Assuntos
Adrenoleucodistrofia , Humanos , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Lipopolissacarídeos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos Graxos/metabolismo , Macrófagos/metabolismo
8.
Bioorg Chem ; 122: 105748, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325694

RESUMO

Cancer immunotherapy using blockade of immune checkpoints is mainly based on monoclonal antibodies. Despite the tremendous success achieved by using those molecules to block immune checkpoint proteins, antibodies possess some weaknesses, which means that there is still a need to search for new compounds as alternatives to antibodies. Many current approaches are focused on use of peptides/peptidomimetics to destroy receptor/ligand interactions. Our studies concern blockade of the BTLA/HVEM complex, which generates an inhibitory effect on the immune response resulting in tolerance to cancer cells. To design inhibitors of such proteins binding we based our work on the amino acid sequence and structure of a ligand of HVEM protein, namely glycoprotein D, which possesses the same binding site on HVEM as BTLA protein. To disrupt the BTLA and HVEM interaction we designed several peptides, all fragments of glycoprotein D, and tested their binding to HVEM using SPR and their ability to inhibit the BTLA/HVEM complex formation using ELISA tests and cellular reporter platforms. That led to identification of two peptides, namely gD(1-36)(K10C-D30C) and gD(1-36)(A12C-L25C), which interact with HVEM and possess blocking capacities. Both peptides are not cytotoxic to human PBMCs, and show stability in human plasma. We also studied the 3D structure of the gD(1-36)(K10C-D30C) peptide using NMR and molecular modeling methods. The obtained data reveal that it possesses an unstructured conformation and binds to HVEM in the same location as gD and BTLA. All these results suggest that peptides based on the binding fragment of gD protein represent promising immunomodulation agents for future cancer immunotherapy.


Assuntos
Receptores Imunológicos , Membro 14 de Receptores do Fator de Necrose Tumoral , Sequência de Aminoácidos , Sítios de Ligação , Glicoproteínas , Humanos , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo
9.
Bioorg Chem ; 128: 106047, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35963023

RESUMO

Over the past few years, many molecules such as monoclonal antibodies, affibodies, nanobodies, and small compounds have been designed and tested as inhibitors of PD-1/PD-L1 complex formation. Some of them have been successfully implemented into clinical oncology practice. However, the majority of these compounds have disadvantages and limitations, such as high production price, potential for immunogenicity and/or prolonged clearance. Thus, new inhibitors of the PD-1/PD-L1 immune checkpoints are needed. Recently, peptides emerged as potential novel approach for blocking receptor/ligand interaction. In the presented studies we have designed, synthesised and tested peptides, which are potential inhibitors of the PD-1/PD-L1 axis. The amino acid sequences of the designed peptides were based on the binding sites of PD-1 to PD-L1, as determined by the crystal structure of the protein complex and also based on MM/GBSA analysis. Interactions of the peptides with PD-L1 protein were confirmed using SPR, while their inhibitory properties were studied using cell-based PD-1/PD-L1 immune checkpoint blockade assays. The characterization of the peptides has shown that the peptides PD-1(119-142)T120C-E141C, PD-1(119-142)C123-S137C and PD-1(122-138)C123-S137C strongly bind to PD-L1 protein and disrupt the interaction of the proteins. PD-1(122-138)C123-S137C peptide was shown to have the best inhibitory potential from the panel of peptides. Its 3D NMR structure was determined and the binding site to PD-L1 was established using molecular modelling methods. Our results indicate that the PD-1 derived peptides are able to mimic the PD-1 protein and inhibit PD-1/PD-L1 complex formation.


Assuntos
Antígeno B7-H1 , Neoplasias , Antígeno B7-H1/metabolismo , Humanos , Imunoterapia/métodos , Neoplasias/terapia , Peptídeos/química , Peptídeos/farmacologia , Receptor de Morte Celular Programada 1/química , Receptor de Morte Celular Programada 1/metabolismo
10.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238640

RESUMO

One of the major current trends in cancer immunotherapy is the blockade of immune checkpoint proteins that negatively regulate the immune response. This has been achieved through antibodies blocking PD-1/PD-L1 and CTLA-4/CD80/CD86 interactions. Such antibodies have revolutionized oncological therapy and shown a new way to fight cancer. Additional (negative) immune checkpoints are also promising targets in cancer therapy and there is a demand for inhibitors for these molecules. Our studies are focused on BTLA/HVEM complex, which inhibits T-cell proliferation and cytokine production and therefore has great potential as a new target for cancer treatment. The goal of the presented studies was the design and synthesis of compounds able to block BTLA/HVEM interactions. For that purpose, the N-terminal fragment of glycoprotein D (gD), which interacts with HVEM, was used. Based on the crystal structure of the gD/HVEM complex and MM/GBSA analysis performed on it, several peptides were designed and synthesized as potential inhibitors of the BTLA/HVEM interaction. Affinity tests, ELISA tests, and cellular-based reporter assays were performed on these compounds to check their ability to bind to HVEM and to inhibit BTLA/HVEM complex formation. For leading peptides candidates, all-atom and subsequent docking simulations with a coarse-grained force field were performed to determine their binding modes. To further evaluate their potential as drug candidates, their stability in plasma and their cytotoxicity effects on PBMCs were assessed. Our data indicate that the peptide gD(1-36)(K10C-T29C) is the best candidate as a future drug. It interacts with HVEM protein, blocks the BTLA/HVEM interaction, and is nontoxic to cells. The present study provides a new perspective on the development of BTLA/HVEM inhibitors that disrupt protein interactions.


Assuntos
Glicoproteínas/farmacologia , Neoplasias/terapia , Peptídeos/farmacologia , Receptores Imunológicos/antagonistas & inibidores , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Glicoproteínas/genética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Ativação Linfocitária/efeitos dos fármacos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia
11.
Transl Oncol ; 42: 101892, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359715

RESUMO

The PD-1/PD-L1 complex belongs to the group of inhibitory immune checkpoints and plays a critical role in immune regulation. The PD-1/PD-L1 axis is also responsible for immune evasion of cancer cells, and this complex is one of the main targets of immunotherapies used in oncology. Treatment using immune checkpoint inhibitors is mainly based on antibodies. This approach has great therapeutic potential; however, it also has major drawbacks and can induce immune-related adverse events. Thus, there is a strong need for alternative, non-antibody-based therapies using small molecules, peptides, or peptidomimetics. In the present study, we designed, synthesized, and evaluated a set of PD-1-targeting peptides based on the sequence and structure of PD-L1. The binding of these peptides to PD-1 was investigated using SPR and ELISA. We also assessed their ability to compete with PD-L1 for binding to PD-1 and their inhibitory properties against the PD-1/PD-L1 complex at the cellular level. The best results were obtained for the peptide PD-L1(111-127)(Y112C-I126C), named (L11), which displaced PD-L1 from binding to PD-1 in the competitive assay and inhibited the formation of the PD-1/PD-L1 complex. The (L11) peptide also exhibited strong affinity for PD-1. NMR studies revealed that (L11) does not form a well-defined secondary structure; however, MD simulation indicated that (L11) binds to PD-1 at the same place as PD-L1. After further optimization of the structure, the peptide inhibitor obtained in this study could also be used as a potential therapeutic compound targeting the PD-1/PD-L1 axis.

12.
Biomed Pharmacother ; 165: 115161, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37473684

RESUMO

Immune checkpoints can be divided into co-stimulatory and co-inhibitory molecules that regulate the activation and effector functions of T cells. The co-inhibitory pathways mediated by ICPs are used by cancer cells to escape from immune surveillance, and therefore the blockade of these receptor/ligand interactions is one of the strategies used in the treatment of cancer. The two main pathways currently under investigation are CTLA-4/CD80/CD86 and PD-1/PD-L1, and the monoclonal Abs targeting them have shown potent immunomodulatory effects and activity in clinical environments. Another interesting target in cancer treatment is the BTLA/HVEM complex. Binding of BTLA protein on T cells to HVEM on cancer cells leads to inhibition of T cell proliferation and cytokine production. In the presented work, we focused on blocking the HVEM protein using BTLA-derived peptides. Based on the crystal structure of the BTLA/HVEM complex and MM/GBSA analysis performed here, we designed and synthesized peptides, specifically fragments of BTLA protein. We subsequently checked the inhibitory capacities of these compounds using ELISA and a cellular reporter platform. Two of these peptides, namely BTLA(35-43) and BTLA(33-64)C58Abu displayed the most promising properties, and we therefore performed further studies to evaluate their affinity to HVEM protein, their stability in plasma and their effect on viability of human PBMCs. In addition, the 3D structure for the peptide BTLA(33-64)C58Abu was determined using NMR. Obtained data confirmed that the BTLA-derived peptides could be the basis for future drugs and their immunomodulatory potential merits further examination.


Assuntos
Receptores Imunológicos , Membro 14 de Receptores do Fator de Necrose Tumoral , Humanos , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Linfócitos T , Peptídeos/química , Ligação Proteica
13.
Nat Commun ; 14(1): 7804, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016944

RESUMO

Interactions of membrane-resident proteins are important targets for therapeutic interventions but most methods to study them are either costly, laborious or fail to reflect the physiologic interaction of membrane resident proteins in trans. Here we describe highly sensitive cellular biosensors as a tool to study receptor-ligand pairs. They consist of fluorescent reporter cells that express chimeric receptors harboring ectodomains of cell surface molecules and intracellular signaling domains. We show that a broad range of molecules can be integrated into this platform and we demonstrate its applicability to highly relevant research areas, including the characterization of immune checkpoints and the probing of cells for the presence of receptors or ligands. The platform is suitable to evaluate the interactions of viral proteins with host receptors and to test for neutralization capability of drugs or biological samples. Our results indicate that cellular biosensors have broad utility as a tool to study protein-interactions.


Assuntos
Técnicas Biossensoriais , Transdução de Sinais , Ligantes , Membrana Celular/metabolismo , Ligação Proteica , Proteínas de Membrana/metabolismo
14.
Front Immunol ; 13: 956694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081508

RESUMO

The engagement of the herpesvirus entry mediator (HVEM, TNFRSF14) by the B and T lymphocyte attenuator (BTLA) represents a unique interaction between an activating receptor of the TNFR-superfamily and an inhibitory receptor of the Ig-superfamily. BTLA and HVEM have both been implicated in the regulation of human T cell responses, but their role is complex and incompletely understood. Here, we have used T cell reporter systems to dissect the complex interplay of HVEM with BTLA and its additional ligands LIGHT and CD160. Co-expression with LIGHT or CD160, but not with BTLA, induced strong constitutive signaling via HVEM. In line with earlier reports, we observed that in cis interaction of BTLA and HVEM prevented HVEM co-stimulation by ligands on surrounding cells. Intriguingly, our data indicate that BTLA mediated inhibition is not impaired in this heterodimeric complex, suggesting a dominant role of BTLA co-inhibition. Stimulation of primary human T cells in presence of HVEM ligands indicated a weak costimulatory capacity of HVEM potentially owed to its in cis engagement by BTLA. Furthermore, experiments with T cell reporter cells and primary T cells demonstrate that HVEM antibodies can augment T cell responses by concomitantly acting as checkpoint inhibitors and co-stimulation agonists.


Assuntos
Receptores Imunológicos , Membro 14 de Receptores do Fator de Necrose Tumoral , Linfócitos T , Antígenos CD , Linfócitos B/metabolismo , Proteínas Ligadas por GPI , Humanos , Ligantes , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais
15.
Microorganisms ; 10(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36557742

RESUMO

Chlamydia trachomatis (Ct) is the most common cause of genital tract infections as well as preventable blindness worldwide. Pattern recognition receptors such as toll-like receptors (TLRs) represent the initial step in recognizing pathogenic microorganisms and are crucial for the initiation of an appropriate immune response. However, our understanding of TLR-signaling in Chlamydia-infected immune cells is incomplete. For a better comprehension of pathological inflammatory responses, robust models for interrogating TLR-signaling upon chlamydial infections are needed. To analyze the TLR response, we developed and utilized a highly sensitive and selective fluorescent transcriptional cellular reporter system to measure the activity of the transcription factor NF-κB. Upon incubation of the reporter cells with different preparations of Ct, we were able to pinpoint which components of TLRs are involved in the recognition of Ct. We identified CD14 associated with unique characteristics of different serovars as the crucial factor of the TLR4/CD14/MD2 complex for Ct-mediated activation of the NF-κB pathway. Furthermore, we found the TLR4/CD14/MD2 complex to be decisive for the uptake of Ct-derived lipopolysaccharides but not for infection and replication of Ct. Imaging flow cytometry provided information about inclusion formation in myeloid- as well as lymphocytic cells and was highest for Ct L2 with at least 25% of inclusion forming cells. Ct E inclusion formation was eminent in Jurkat cells without CD14 expression (11.1%). Thus, our model enables to determine Ct uptake and signal induction by pinpointing individual components of the recognition and signaling pathways to better understand the immune response towards infectious pathogens.

16.
Cancers (Basel) ; 14(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36428769

RESUMO

The application of monoclonal antibodies (mAbs), targeting tumor-associated (TAAs) or tumor-specific antigens or immune checkpoints (ICs), has shown tremendous success in cancer therapy. However, the application of mAbs suffers from a series of limitations, including the necessity of frequent administration, the limited duration of clinical response and the emergence of frequently pronounced immune-related adverse events. However, the introduction of mAbs has also resulted in a multitude of novel developments for the treatment of cancers, including vaccinations against various tumor cell-associated epitopes. Here, we reviewed recent clinical trials involving combination therapies with mAbs targeting the PD-1/PD-L1 axis and Her-2/neu, which was chosen as a paradigm for a clinically highly relevant TAA. Our recent findings from murine immunizations against the PD-1 pathway and Her-2/neu with peptides representing the mimotopes/B cell peptides of therapeutic antibodies targeting these molecules are an important focus of the present review. Moreover, concerns regarding the safety of vaccination approaches targeting PD-1, in the context of the continuing immune response, as a result of induced immunological memory, are also addressed. Hence, we describe a new frontier of cancer treatment by active immunization using combined mimotopes/B cell peptides aimed at various targets relevant to cancer biology.

17.
Front Immunol ; 12: 817604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087538

RESUMO

Toll-like receptors (TLRs) are primary pattern recognition receptors (PRRs), which recognize conserved microbial components. They play important roles in innate immunity but also in the initiation of adaptive immune responses. Impurities containing TLR ligands are a frequent problem in research but also for the production of therapeutics since TLR ligands can exert strong immunomodulatory properties even in minute amounts. Consequently, there is a need for sensitive tools to detect TLR ligands with high sensitivity and specificity. Here we describe the development of a platform based on a highly sensitive NF-κB::eGFP reporter Jurkat JE6-1 T cell line for the detection of TLR ligands. Ectopic expression of TLRs and their coreceptors and CRISPR/Cas9-mediated deletion of endogenously expressed TLRs was deployed to generate reporter cell lines selectively expressing functional human TLR2/1, TLR2/6, TLR4 or TLR5 complexes. Using well-defined agonists for the respective TLR complexes we could demonstrate high specificity and sensitivity of the individual reporter lines. The limit of detection for LPS was below 1 pg/mL and ligands for TLR2/1 (Pam3CSK4), TLR2/6 (Fsl-1) and TLR5 (flagellin) were detected at concentrations as low as 1.0 ng/mL, 0.2 ng/mL and 10 pg/mL, respectively. We showed that the JE6-1 TLR reporter cells have the utility to characterize different commercially available TLR ligands as well as more complex samples like bacterially expressed proteins or allergen extracts. Impurities in preparations of microbial compounds as well as the lack of specificity of detection systems can lead to erroneous results and currently there is no consensus regarding the involvement of TLRs in the recognition of several molecules with proposed immunostimulatory functions. This reporter system represents a highly suitable tool for the definition of structural requirements for agonists of distinct TLR complexes.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Fenômenos Fisiológicos Bacterianos , Bioensaio/métodos , Receptores Toll-Like/metabolismo , Técnicas Biossensoriais , Sistemas CRISPR-Cas , Linhagem Celular , Expressão Gênica , Genes Reporter , Humanos , Ligantes , Família Multigênica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Receptores Toll-Like/genética
18.
Front Immunol ; 11: 895, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528470

RESUMO

Therapeutic monoclonal antibodies (mAbs), targeting tumor antigens, or immune checkpoints, have demonstrated a remarkable anti-tumor effect against various malignancies. However, high costs for mono- or combination therapies, associated with adverse effects or possible development of resistance in some patients, warrant further development and modification to gain more flexibility for this immunotherapy approach. An attractive alternative to passive immunization with therapeutic antibodies might be active immunization with mimotopes (B-cell peptides) representing the mAbs' binding epitopes, to activate the patient's own anti-tumor immune response following immunization. Here, we identified and examined the feasibility of inducing anti-tumor effects in vivo following active immunization with a mimotope of the immune checkpoint programmed cell death 1 (PD1), alone or in combination with a Her-2/neu B-cell peptide vaccine. Overlapping peptides spanning the extracellular domains of human PD1 (hPD1) were used to identify hPD1-derived mimotopes, using the therapeutic mAb Nivolumab as a proof of concept. Additionally, for in vivo evaluation in a tumor mouse model, a mouse PD1 (mPD1)-derived mimotope was identified using an anti-mPD1 mAb with mPD1/mPDL-1 blocking capacity. The identified mimotopes were characterized by in vitro assays, including a reporter cell-based assay, and their anti-tumor effects were evaluated in a syngeneic tumor mouse model stably expressing human Her-2/neu. The identified PD1-derived mimotopes were shown to significantly block the mAbs' capacity in inhibiting the respective PD1/PD-L1 interactions. A significant reduction in tumor growth in vivo was observed following active immunization with the mPD1-derived mimotope, associated with a significant reduction in proliferation and increased apoptotic rates in the tumors. Particularly, combined vaccination with the mPD1-derived mimotope and a multiple B-cell epitope Her-2/neu vaccine potentiated the vaccine's anti-tumor effect. Our results suggest active immunization with mimotopes of immune checkpoint inhibitors either as monotherapy or as combination therapy with tumor-specific vaccines, as a new strategy for cancer treatment.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Linfócitos B/imunologia , Neoplasias da Mama/tratamento farmacológico , Vacinas Anticâncer/farmacologia , Epitopos , Inibidores de Checkpoint Imunológico/farmacologia , Nivolumabe/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Animais , Linfócitos B/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Estudos de Viabilidade , Feminino , Humanos , Imunização , Células Jurkat , Células K562 , Camundongos Endogâmicos BALB C , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Estudo de Prova de Conceito , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Carga Tumoral/efeitos dos fármacos , Vacinas de Subunidades Antigênicas/farmacologia
19.
Sci Rep ; 9(1): 16382, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690814

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
Sci Rep ; 9(1): 7426, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092850

RESUMO

Invariant natural killer T (iNKT) cells are a specialized subset of T cells contributing to both, the innate and adaptive immune responses. In contrast to conventional T lymphocytes they recognize lipid antigens. The aim of the project is to establish a novel model system, to study iNKT-TCR - ligand interaction. An iNKT reporter cell line (JE6-1REP-iNKT) was engineered by introducing the human iNKT-TCR into a human leukemic T cell line carrying an NF-κB-driven fluorescent transcriptional reporter construct. Antigen presenting BWSTIM cells expressing human CD1d and CD80 were generated. Reporter induction in JE6-1REP-iNKT cells was assessed by flow cytometry. CRISPR/Cas9 was used for ß2M knock out in JE6-1REP-iNKT cells to abrogate CD1d expression and thus excluding antigen self-presentation. Reporter cells were shown to specifically react with iNKT antigens presented via CD1d. Their sensitivity towards α-GalCer was comparable to a murine iNKT hybridoma cell line. In conclusion, we created a novel iNKT reporter platform which, compared to traditional iNKT cell assays, is characterized by a shorter turnaround time and lower costs. It thus facilitates the identification of antigenic structures that drive the activation of iNKT cells in health and disease.


Assuntos
Antígenos/imunologia , Células Jurkat/metabolismo , Lipídeos/imunologia , Células T Matadoras Naturais/metabolismo , Receptores de Células Matadoras Naturais/imunologia , Animais , Técnicas de Cocultura , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Células T Matadoras Naturais/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa