Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 192(3): 2404-2418, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37052178

RESUMO

Plant water uptake is determined by the root system architecture and its hydraulic capacity, which together define the root hydraulic architecture. The current research aims at understanding the water uptake capacities of maize (Zea mays), a model organism and major crop. We explored the genetic variations within a collection of 224 maize inbred Dent lines and successively defined core genotype subsets to access multiple architectural, anatomical, and hydraulic parameters in the primary root (PR) and seminal roots (SR) of hydroponically grown seedlings. We found 9-, 3.5-, and 12.4-fold genotypic differences for root hydraulics (Lpr), PR size, and lateral root size, respectively, that shaped wide and independent variations of root structure and function. Within genotypes, PR and SR showed similarities in hydraulics and, to a lesser extent, in anatomy. They had comparable aquaporin activity profiles that, however, could not be explained by aquaporin expression levels. Genotypic variations in the size and number of late meta xylem vessels were positively correlated with Lpr. Inverse modeling further revealed dramatic genotypic differences in the xylem conductance profile. Thus, tremendous natural variation of maize root hydraulic architecture underlies a high diversity of water uptake strategies and paves the way to quantitative genetic dissection of its elementary traits.


Assuntos
Aquaporinas , Água , Zea mays , Aquaporinas/genética , Aquaporinas/metabolismo , Fenótipo , Raízes de Plantas/metabolismo , Água/metabolismo , Zea mays/metabolismo
2.
Theor Appl Genet ; 137(3): 75, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453705

RESUMO

KEY MESSAGE: We validated the efficiency of genomic predictions calibrated on sparse factorial training sets to predict the next generation of hybrids and tested different strategies for updating predictions along generations. Genomic selection offers new prospects for revisiting hybrid breeding schemes by replacing extensive phenotyping of individuals with genomic predictions. Finding the ideal design for training genomic prediction models is still an open question. Previous studies have shown promising predictive abilities using sparse factorial instead of tester-based training sets to predict single-cross hybrids from the same generation. This study aims to further investigate the use of factorials and their optimization to predict line general combining abilities (GCAs) and hybrid values across breeding cycles. It relies on two breeding cycles of a maize reciprocal genomic selection scheme involving multiparental connected reciprocal populations from flint and dent complementary heterotic groups selected for silage performances. Selection based on genomic predictions trained on a factorial design resulted in a significant genetic gain for dry matter yield in the new generation. Results confirmed the efficiency of sparse factorial training sets to predict candidate line GCAs and hybrid values across breeding cycles. Compared to a previous study based on the first generation, the advantage of factorial over tester training sets appeared lower across generations. Updating factorial training sets by adding single-cross hybrids between selected lines from the previous generation or a random subset of hybrids from the new generation both improved predictive abilities. The CDmean criterion helped determine the set of single-crosses to phenotype to update the training set efficiently. Our results validated the efficiency of sparse factorial designs for calibrating hybrid genomic prediction experimentally and showed the benefit of updating it along generations.


Assuntos
Hibridização Genética , Zea mays , Genômica/métodos , Melhoramento Vegetal , Silagem , Zea mays/genética
3.
Theor Appl Genet ; 137(1): 19, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214870

RESUMO

KEY MESSAGE: Implementing a collaborative pre-breeding multi-parental population efficiently identifies promising donor x elite pairs to enrich the flint maize elite germplasm. Genetic diversity is crucial for maintaining genetic gains and ensuring breeding programs' long-term success. In a closed breeding program, selection inevitably leads to a loss of genetic diversity. While managing diversity can delay this loss, introducing external sources of diversity is necessary to bring back favorable genetic variation. Genetic resources exhibit greater diversity than elite materials, but their lower performance levels hinder their use. This is the case for European flint maize, for which elite germplasm has incorporated only a limited portion of the diversity available in landraces. To enrich the diversity of this elite genetic pool, we established an original cooperative maize bridging population that involves crosses between private elite materials and diversity donors to create improved genotypes that will facilitate the incorporation of original favorable variations. Twenty donor × elite BC1S2 families were created and phenotyped for hybrid value for yield related traits. Crosses showed contrasted means and variances and therefore contrasted potential in terms of selection as measured by their usefulness criterion (UC). Average expected mean performance gain over the initial elite material was 5%. The most promising donor for each elite line was identified. Results also suggest that one more generation, i.e., 3 in total, of crossing to the elite is required to fully exploit the potential of a donor. Altogether, our results support the usefulness of incorporating genetic resources into elite flint maize. They call for further effort to create fixed diversity donors and identify those most suitable for each elite program.


Assuntos
Melhoramento Vegetal , Zea mays , Humanos , Zea mays/genética , Fenótipo , Genótipo , Variação Genética
4.
Plant Biotechnol J ; 21(6): 1123-1139, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36740649

RESUMO

Landraces, that is, traditional varieties, have a large diversity that is underexploited in modern breeding. A novel DNA pooling strategy was implemented to identify promising landraces and genomic regions to enlarge the genetic diversity of modern varieties. As proof of concept, DNA pools from 156 American and European maize landraces representing 2340 individuals were genotyped with an SNP array to assess their genome-wide diversity. They were compared to elite cultivars produced across the 20th century, represented by 327 inbred lines. Detection of selective footprints between landraces of different geographic origin identified genes involved in environmental adaptation (flowering times, growth) and tolerance to abiotic and biotic stress (drought, cold, salinity). Promising landraces were identified by developing two novel indicators that estimate their contribution to the genome of inbred lines: (i) a modified Roger's distance standardized by gene diversity and (ii) the assignation of lines to landraces using supervised analysis. It showed that most landraces do not have closely related lines and that only 10 landraces, including famous landraces as Reid's Yellow Dent, Lancaster Surecrop and Lacaune, cumulated half of the total contribution to inbred lines. Comparison of ancestral lines directly derived from landraces with lines from more advanced breeding cycles showed a decrease in the number of landraces with a large contribution. New inbred lines derived from landraces with limited contributions enriched more the haplotype diversity of reference inbred lines than those with a high contribution. Our approach opens an avenue for the identification of promising landraces for pre-breeding.


Assuntos
Genômica , Melhoramento Vegetal , Genótipo , Genoma de Planta/genética , DNA , Variação Genética/genética , Zea mays/genética
5.
Theor Appl Genet ; 136(11): 219, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816986

RESUMO

KEY MESSAGE: An original GWAS model integrating the ancestry of alleles was proposed and allowed the detection of background specific additive and dominance QTLs involved in heterotic group complementarity and hybrid performance. Maize genetic diversity is structured into genetic groups selected and improved relative to each other. This process increases group complementarity and differentiation over time and ensures that the hybrids produced from inter-group crosses exhibit high performances and heterosis. To identify loci involved in hybrid performance and heterotic group complementarity, we introduced an original association study model that disentangles allelic effects from the heterotic group origin of the alleles and compared it with a conventional additive/dominance model. This new model was applied on a factorial between Dent and Flint lines and a diallel between Dent-Flint admixed lines with two different layers of analysis: within each environment and in a multiple-environment context. We identified several strong additive QTLs for all traits, including some well-known additive QTLs for flowering time (in the region of Vgt1/2 on chromosome 8). Yield trait displayed significant non-additive effects in the diallel panel. Most of the detected Yield QTLs exhibited overdominance or, more likely, pseudo-overdominance effects. Apparent overdominance at these QTLs contributed to a part of the genetic group complementarity. The comparison between environments revealed a higher stability of additive QTL effects than non-additive ones. Several QTLs showed variations of effects according to the local heterotic group origin. We also revealed large chromosomic regions that display genetic group origin effects. Altogether, our results illustrate how admixed panels combined with dedicated GWAS modeling allow the identification of new QTLs that could not be revealed by a classical hybrid panel analyzed with traditional modeling.


Assuntos
Vigor Híbrido , Zea mays , Mapeamento Cromossômico/métodos , Zea mays/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Fenótipo
6.
PLoS Genet ; 16(3): e1008241, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130208

RESUMO

When handling a structured population in association mapping, group-specific allele effects may be observed at quantitative trait loci (QTLs) for several reasons: (i) a different linkage disequilibrium (LD) between SNPs and QTLs across groups, (ii) group-specific genetic mutations in QTL regions, and/or (iii) epistatic interactions between QTLs and other loci that have differentiated allele frequencies between groups. We present here a new genome-wide association (GWAS) approach to identify QTLs exhibiting such group-specific allele effects. We developed genetic materials including admixed progeny from different genetic groups with known genome-wide ancestries (local admixture). A dedicated statistical methodology was developed to analyze pure and admixed individuals jointly, allowing one to disentangle the factors causing the heterogeneity of allele effects across groups. This approach was applied to maize by developing an inbred "Flint-Dent" panel including admixed individuals that was evaluated for flowering time. Several associations were detected revealing a wide range of configurations of allele effects, both at known flowering QTLs (Vgt1, Vgt2 and Vgt3) and new loci. We found several QTLs whose effect depended on the group ancestry of alleles while others interacted with the genetic background. Our GWAS approach provides useful information on the stability of QTL effects across genetic groups and can be applied to a wide range of species.


Assuntos
Epistasia Genética/genética , Flores/genética , Locos de Características Quantitativas/genética , Zea mays/genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Frequência do Gene/genética , Patrimônio Genético , Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Desequilíbrio de Ligação/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
7.
Theor Appl Genet ; 135(9): 3143-3160, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35918515

RESUMO

KEY MESSAGE: Calibrating a genomic selection model on a sparse factorial design rather than on tester designs is advantageous for some traits, and equivalent for others. In maize breeding, the selection of the candidate inbred lines is based on topcross evaluations using a limited number of testers. Then, a subset of single-crosses between these selected lines is evaluated to identify the best hybrid combinations. Genomic selection enables the prediction of all possible single-crosses between candidate lines but raises the question of defining the best training set design. Previous simulation results have shown the potential of using a sparse factorial design instead of tester designs as the training set. To validate this result, a 363 hybrid factorial design was obtained by crossing 90 dent and flint inbred lines from six segregating families. Two tester designs were also obtained by crossing the same inbred lines to two testers of the opposite group. These designs were evaluated for silage in eight environments and used to predict independent performances of a 951 hybrid factorial design. At a same number of hybrids and lines, the factorial design was as efficient as the tester designs, and, for some traits, outperformed them. All available designs were used as both training and validation set to evaluate their efficiency. When the objective was to predict single-crosses between untested lines, we showed an advantage of increasing the number of lines involved in the training set, by (1) allocating each of them to a different tester for the tester design, or (2) reducing the number of hybrids per line for the factorial design. Our results confirm the potential of sparse factorial designs for genomic hybrid breeding.


Assuntos
Melhoramento Vegetal , Zea mays , Genômica/métodos , Humanos , Hibridização Genética , Silagem , Zea mays/genética
8.
BMC Plant Biol ; 19(1): 318, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311506

RESUMO

BACKGROUND: Single Nucleotide Polymorphism (SNP) array and re-sequencing technologies have different properties (e.g. calling rate, minor allele frequency profile) and drawbacks (e.g. ascertainment bias). This lead us to study their complementarity and the consequences of using them separately or combined in diversity analyses and Genome-Wide Association Studies (GWAS). We performed GWAS on three traits (grain yield, plant height and male flowering time) measured in 22 environments on a panel of 247 F1 hybrids obtained by crossing 247 diverse dent maize inbred lines with a same flint line. The 247 lines were genotyped using three genotyping technologies (Genotyping-By-Sequencing, Illumina Infinium 50 K and Affymetrix Axiom 600 K arrays). RESULTS: The effects of ascertainment bias of the 50 K and 600 K arrays were negligible for deciphering global genetic trends of diversity and for estimating relatedness in this panel. We developed an original approach based on linkage disequilibrium (LD) extent in order to determine whether SNPs significantly associated with a trait and that are physically linked should be considered as a single Quantitative Trait Locus (QTL) or several independent QTLs. Using this approach, we showed that the combination of the three technologies, which have different SNP distributions and densities, allowed us to detect more QTLs (gain in power) and potentially refine the localization of the causal polymorphisms (gain in resolution). CONCLUSIONS: Conceptually different technologies are complementary for detecting QTLs by tagging different haplotypes in association studies. Considering LD, marker density and the combination of different technologies (SNP-arrays and re-sequencing), the genotypic data available were most likely enough to well represent polymorphisms in the centromeric regions, whereas using more markers would be beneficial for telomeric regions.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Técnicas de Genotipagem , Haplótipos , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Zea mays/genética , Alelos , Biodiversidade , Cromossomos de Plantas , Marcadores Genéticos , Genoma de Planta , Desequilíbrio de Ligação , Zea mays/crescimento & desenvolvimento
9.
Theor Appl Genet ; 132(5): 1523-1542, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30734114

RESUMO

KEY MESSAGE: Silage quality traits of maize hybrids between the Dent and Flint heterotic groups mostly involved QTL specific of each parental group, some of them showing unfavorable pleiotropic effects on yield. Maize (Zea mays L.) is commonly used as silage for cattle feeding in Northern Europe. In addition to biomass production, improving whole-plant digestibility is a major breeding objective. To identify loci involved in the general (GCA, parental values) and specific combining ability (SCA, cross-specific value) components of hybrid value, we analyzed an incomplete factorial design of 951 hybrids obtained by crossing inbred lines issued from two multiparental connected populations, each specific to one of the heterotic groups used for silage in Europe ("Dent" and "Flint"). Inbred lines were genotyped for approximately 20K single nucleotide polymorphisms, and hybrids were phenotyped in eight environments for seven silage quality traits measured by near-infrared spectroscopy, biomass yield and precocity (partly analyzed in a previous study). We estimated variance components for GCA and SCA and their interaction with environment. We performed QTL detection using different models adapted to this hybrid population. Strong family effects and a predominance of GCA components compared to SCA were found for all traits. In total, 230 QTL were detected, with only two showing SCA effects significant at the whole-genome level. More than 80% of GCA QTL were specific of one heterotic group. QTL explained individually less than 5% of the phenotypic variance. QTL co-localizations and correlation between QTL effects of quality and productivity traits suggest at least partial pleiotropic effects. This work opens new prospects for improving maize hybrid performances for both biomass productivity and quality accounting for complementarities between heterotic groups.


Assuntos
Locos de Características Quantitativas , Zea mays/genética , Mapeamento Cromossômico , Hibridização Genética , Zea mays/crescimento & desenvolvimento
10.
Plant Physiol ; 172(2): 749-764, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27436830

RESUMO

Assessing the genetic variability of plant performance under heat and drought scenarios can contribute to reduce the negative effects of climate change. We propose here an approach that consisted of (1) clustering time courses of environmental variables simulated by a crop model in current (35 years × 55 sites) and future conditions into six scenarios of temperature and water deficit as experienced by maize (Zea mays L.) plants; (2) performing 29 field experiments in contrasting conditions across Europe with 244 maize hybrids; (3) assigning individual experiments to scenarios based on environmental conditions as measured in each field experiment; frequencies of temperature scenarios in our experiments corresponded to future heat scenarios (+5°C); (4) analyzing the genetic variation of plant performance for each environmental scenario. Forty-eight quantitative trait loci (QTLs) of yield were identified by association genetics using a multi-environment multi-locus model. Eight and twelve QTLs were associated to tolerances to heat and drought stresses because they were specific to hot and dry scenarios, respectively, with low or even negative allelic effects in favorable scenarios. Twenty-four QTLs improved yield in favorable conditions but showed nonsignificant effects under stress; they were therefore associated with higher sensitivity. Our approach showed a pattern of QTL effects expressed as functions of environmental variables and scenarios, allowing us to suggest hypotheses for mechanisms and candidate genes underlying each QTL. It can be used for assessing the performance of genotypes and the contribution of genomic regions under current and future stress situations and to accelerate breeding for drought-prone environments.


Assuntos
Biomassa , Secas , Genoma de Planta/genética , Temperatura Alta , Adaptação Fisiológica/genética , Alelos , Mapeamento Cromossômico , Mudança Climática , Ecossistema , Europa (Continente) , Genótipo , Hibridização Genética , Fenótipo , Análise de Componente Principal , Locos de Características Quantitativas/genética , Estresse Fisiológico , Zea mays/classificação , Zea mays/genética , Zea mays/crescimento & desenvolvimento
11.
Theor Appl Genet ; 130(10): 2165-2189, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28780587

RESUMO

KEY MESSAGE: Genotyping by sequencing is suitable for analysis of global diversity in maize. We showed the distinctiveness of flint maize inbred lines of interest to enrich the diversity of breeding programs. Genotyping-by-sequencing (GBS) is a highly cost-effective procedure that permits the analysis of large collections of inbred lines. We used it to characterize diversity in 1191 maize flint inbred lines from the INRA collection, the European Cornfed association panel, and lines recently derived from landraces. We analyzed the properties of GBS data obtained with different imputation methods, through comparison with a 50 K SNP array. We identified seven ancestral groups within the Flint collection (dent, Northern flint, Italy, Pyrenees-Galicia, Argentina, Lacaune, Popcorn) in agreement with breeding knowledge. Analysis highlighted many crosses between different origins and the improvement of flint germplasm with dent germplasm. We performed association studies on different agronomic traits, revealing SNPs associated with cob color, kernel color, and male flowering time variation. We compared the diversity of both our collection and the USDA collection which has been previously analyzed by GBS. The population structure of the 4001 inbred lines confirmed the influence of the historical inbred lines (B73, A632, Oh43, Mo17, W182E, PH207, and Wf9) within the dent group. It showed distinctly different tropical and popcorn groups, a sweet-Northern flint group and a flint group sub-structured in Italian and European flint (Pyrenees-Galicia and Lacaune) groups. Interestingly, we identified several selective sweeps between dent, flint, and tropical inbred lines that co-localized with SNPs associated with flowering time variation. The joint analysis of collections by GBS offers opportunities for a global diversity analysis of maize inbred lines.


Assuntos
Variação Genética , Genética Populacional , Melhoramento Vegetal , Zea mays/genética , Europa (Continente) , Genótipo , Endogamia , Fenótipo , Polimorfismo de Nucleotídeo Único , Estados Unidos , United States Department of Agriculture
12.
Biology (Basel) ; 13(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38927334

RESUMO

The ECPGR European Evaluation Network (EVA) for Maize involves genebanks, research institutions, and private breeding companies from nine countries focusing on the valorization of maize genetic resources across Europe. This study describes a diverse collection of 626 local landraces and traditional varieties of maize (Zea mays L.) from nine European genebanks, including criteria for selection of the collection and its genetic and phenotypic diversity. High-throughput pool genotyping grouped the landraces into nine genetic groups with a threshold of 0.6 admixture, while 277 accessions were designated admixed and likely to have resulted from previous breeding activities. The grouping correlated well with the geographic origins of the collection, also reflecting the various pathways of introduction of maize to Europe. Phenotypic evaluations of 588 accessions for flowering time and plant architecture in multilocation trials over three years confirmed the great diversity within the collection, although phenotypic clusters only partially correlated with the genetic grouping. The EVA approach promotes conservation of genetic resources and opens an opportunity to increase genetic variability for developing improved varieties and populations for farmers, with better adaptation to specific environments and greater tolerance to various stresses. As such, the EVA maize collection provides valuable sources of diversity for facing climate change due to the varieties' local adaptation.

13.
Front Plant Sci ; 11: 568699, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488638

RESUMO

Genebanks harbor original landraces carrying many original favorable alleles for mitigating biotic and abiotic stresses. Their genetic diversity remains, however, poorly characterized due to their large within genetic diversity. We developed a high-throughput, cheap and labor saving DNA bulk approach based on single-nucleotide polymorphism (SNP) Illumina Infinium HD array to genotype landraces. Samples were gathered for each landrace by mixing equal weights from young leaves, from which DNA was extracted. We then estimated allelic frequencies in each DNA bulk based on fluorescent intensity ratio (FIR) between two alleles at each SNP using a two step-approach. We first tested either whether the DNA bulk was monomorphic or polymorphic according to the two FIR distributions of individuals homozygous for allele A or B, respectively. If the DNA bulk was polymorphic, we estimated its allelic frequency by using a predictive equation calibrated on FIR from DNA bulks with known allelic frequencies. Our approach: (i) gives accurate allelic frequency estimations that are highly reproducible across laboratories, (ii) protects against false detection of allele fixation within landraces. We estimated allelic frequencies of 23,412 SNPs in 156 landraces representing American and European maize diversity. Modified Roger's genetic Distance between 156 landraces estimated from 23,412 SNPs and 17 simple sequence repeats using the same DNA bulks were highly correlated, suggesting that the ascertainment bias is low. Our approach is affordable, easy to implement and does not require specific bioinformatics support and laboratory equipment, and therefore should be highly relevant for large-scale characterization of genebanks for a wide range of species.

14.
Front Plant Sci ; 10: 488, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105719

RESUMO

The use of lignocellulosic biomass for animal feed or biorefinery requires the optimization of its degradability. Moreover, biomass crops need to be better adapted to the changing climate and in particular to periods of drought. Although the negative impact of water deficit on biomass yield has often been mentioned, its impact on biomass quality has only been recently reported in a few species. In the present study, we combined the mapping power of a maize recombinant inbred line population with robust near infrared spectroscopy predictive equations to track the response to water deficit of traits associated with biomass quality. The population was cultivated under two contrasted water regimes over 3 consecutive years in the south of France and harvested at silage stage. We showed that cell wall degradability and ß-O-4-linked H lignin subunits were increased in response to water deficit, while lignin and p-coumaric acid contents were reduced. A mixed linear model was fitted to map quantitative trait loci (QTLs) for agronomical and cell wall-related traits. These QTLs were categorized as "constitutive" (QTL with an effect whatever the irrigation condition) or "responsive" (QTL involved in the response to water deficit) QTLs. Fifteen clusters of QTLs encompassed more than two third of the 213 constitutive QTLs and 13 clusters encompassed more than 60% of the 149 responsive QTLs. Interestingly, we showed that only half of the responsive QTLs co-localized with constitutive and yield QTLs, suggesting that specific genetic factors support biomass quality response to water deficit. Overall, our results demonstrate that water deficit favors cell wall degradability and that breeding of varieties that reconcile improved drought-tolerance and biomass degradability is possible.

15.
Genetics ; 207(3): 1167-1180, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28971957

RESUMO

Several plant and animal species of agricultural importance are commercialized as hybrids to take advantage of the heterosis phenomenon. Understanding the genetic architecture of hybrid performances is therefore of key importance. We developed two multiparental maize (Zea mays L.) populations, each corresponding to an important heterotic group (dent or flint) and comprised of six connected biparental segregating populations of inbred lines (802 and 822 lines for each group, respectively) issued from four founder lines. Instead of using "testers" to evaluate their hybrid values, segregating lines were crossed according to an incomplete factorial design to produce 951 dent-flint hybrids, evaluated for four biomass production traits in eight environments. QTL detection was carried out for the general-combining-ability (GCA) and specific-combining-ability (SCA) components of hybrid value, considering allelic effects transmitted from each founder line. In total, 42 QTL were detected across traits. We detected mostly QTL affecting GCA, 31% (41% for dry matter yield) of which also had mild effects on SCA. The small impact of dominant effects is consistent with the known differentiation between the dent and flint heterotic groups and the small percentage of hybrid variance due to SCA observed in our design (∼20% for the different traits). Furthermore, most (80%) of GCA QTL were segregating in only one of the two heterotic groups. Relative to tester-based designs, use of hybrids between two multiparental populations appears highly cost efficient to detect QTL in two heterotic groups simultaneously. This presents new prospects for selecting superior hybrid combinations with markers.


Assuntos
Hibridização Genética , Modelos Genéticos , Locos de Características Quantitativas , Zea mays/genética , Biomassa , Genes Dominantes , Variação Genética , Endogamia , Característica Quantitativa Herdável , Zea mays/crescimento & desenvolvimento
16.
G3 (Bethesda) ; 7(11): 3649-3657, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28963164

RESUMO

Identification of quantitative trait loci (QTL) involved in the variation of hybrid value is of key importance for cross-pollinated species such as maize (Zea mays L.). In a companion paper, we illustrated a new QTL mapping population design involving a factorial mating between two multiparental segregating populations. Six biparental line populations were developed from four founder lines in the Dent and Flint heterotic groups. They were crossed to produce 951 hybrids and evaluated for silage performances. Previously, a linkage analysis (LA) model that assumes each founder line carries a different allele was used to detect QTL involved in General and Specific Combining Abilities (GCA and SCA, respectively) of hybrid value. This previously introduced model requires the estimation of numerous effects per locus, potentially affecting QTL detection power. Using the same design, we compared this "Founder alleles" model to two more parsimonious models, which assume that (i) identity in state at SNP alleles from the same heterotic group implies identity by descent (IBD) at linked QTL ("SNP within-group" model) or (ii) identity in state implies IBD, regardless of population origin of the alleles ("Hybrid genotype" model). This last model assumes biallelic QTL with equal effects in each group. It detected more QTL on average than the two other models but explained lower percentages of variance. The "SNP within-group" model appeared to be a good compromise between the two other models. These results confirm the divergence between the Dent and Flint groups. They also illustrate the need to adapt the QTL detection model to the complexity of the allelic variation, which depends on the trait, the QTL, and the divergence between the heterotic groups.


Assuntos
Biomassa , Hibridização Genética , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Zea mays/genética , Mapeamento Cromossômico/métodos , Ligação Genética , Polimorfismo de Nucleotídeo Único , Zea mays/crescimento & desenvolvimento
17.
Genetics ; 198(4): 1717-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25271305

RESUMO

Multiparental designs combined with dense genotyping of parents have been proposed as a way to increase the diversity and resolution of quantitative trait loci (QTL) mapping studies, using methods combining linkage disequilibrium information with linkage analysis (LDLA). Two new nested association mapping designs adapted to European conditions were derived from the complementary dent and flint heterotic groups of maize (Zea mays L.). Ten biparental dent families (N = 841) and 11 biparental flint families (N = 811) were genotyped with 56,110 single nucleotide polymorphism markers and evaluated as test crosses with the central line of the reciprocal design for biomass yield, plant height, and precocity. Alleles at candidate QTL were defined as (i) parental alleles, (ii) haplotypic identity by descent, and (iii) single-marker groupings. Between five and 16 QTL were detected depending on the model, trait, and genetic group considered. In the flint design, a major QTL (R(2) = 27%) with pleiotropic effects was detected on chromosome 10, whereas other QTL displayed milder effects (R(2) < 10%). On average, the LDLA models detected more QTL but generally explained lower percentages of variance, consistent with the fact that most QTL display complex allelic series. Only 15% of the QTL were common to the two designs. A joint analysis of the two designs detected between 15 and 21 QTL for the five traits. Of these, between 27 for silking date and 41% for tasseling date were significant in both groups. Favorable allelic effects detected in both groups open perspectives for improving biomass production.


Assuntos
Cruzamentos Genéticos , Ligação Genética , Desequilíbrio de Ligação , Locos de Características Quantitativas , Zea mays/genética , Alelos , Cromossomos de Plantas , Análise por Conglomerados , Evolução Molecular , Genética Populacional , Genoma de Planta , Vigor Híbrido , Hibridização Genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável
18.
Genetics ; 198(1): 3-16, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25236445

RESUMO

The efficiency of marker-assisted prediction of phenotypes has been studied intensively for different types of plant breeding populations. However, one remaining question is how to incorporate and counterbalance information from biparental and multiparental populations into model training for genome-wide prediction. To address this question, we evaluated testcross performance of 1652 doubled-haploid maize (Zea mays L.) lines that were genotyped with 56,110 single nucleotide polymorphism markers and phenotyped for five agronomic traits in four to six European environments. The lines are arranged in two diverse half-sib panels representing two major European heterotic germplasm pools. The data set contains 10 related biparental dent families and 11 related biparental flint families generated from crosses of maize lines important for European maize breeding. With this new data set we analyzed genome-based best linear unbiased prediction in different validation schemes and compositions of estimation and test sets. Further, we theoretically and empirically investigated marker linkage phases across multiparental populations. In general, predictive abilities similar to or higher than those within biparental families could be achieved by combining several half-sib families in the estimation set. For the majority of families, 375 half-sib lines in the estimation set were sufficient to reach the same predictive performance of biomass yield as an estimation set of 50 full-sib lines. In contrast, prediction across heterotic pools was not possible for most cases. Our findings are important for experimental design in genome-based prediction as they provide guidelines for the genetic structure and required sample size of data sets used for model training.


Assuntos
Genoma de Planta , Modelos Genéticos , Zea mays/genética , Hibridização Genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
19.
Genome Biol ; 14(9): R103, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24050704

RESUMO

BACKGROUND: In sexually reproducing organisms, meiotic crossovers ensure the proper segregation of chromosomes and contribute to genetic diversity by shuffling allelic combinations. Such genetic reassortment is exploited in breeding to combine favorable alleles, and in genetic research to identify genetic factors underlying traits of interest via linkage or association-based approaches. Crossover numbers and distributions along chromosomes vary between species, but little is known about their intraspecies variation. RESULTS: Here, we report on the variation of recombination rates between 22 European maize inbred lines that belong to the Dent and Flint gene pools. We genotype 23 doubled-haploid populations derived from crosses between these lines with a 50 k-SNP array and construct high-density genetic maps, showing good correspondence with the maize B73 genome sequence assembly. By aligning each genetic map to the B73 sequence, we obtain the recombination rates along chromosomes specific to each population. We identify significant differences in recombination rates at the genome-wide, chromosome, and intrachromosomal levels between populations, as well as significant variation for genome-wide recombination rates among maize lines. Crossover interference analysis using a two-pathway modeling framework reveals a negative association between re combination rate and interference strength. CONCLUSIONS: To our knowledge, the present work provides the most comprehensive study on intraspecific variation of recombination rates and crossover interference strength in eukaryotes. Differences found in recombination rates will allow for selection of high or low recombining lines in crossing programs. Our methodology should pave the way for precise identification of genes controlling recombination rates in maize and other organisms.


Assuntos
Cromossomos de Plantas/química , Variação Genética , Genoma de Planta , Recombinação Genética , Zea mays/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Ligação Genética , Genótipo , Meiose , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa