RESUMO
Tumor cell fraction (TCF) estimation is a common clinical task with well-established large interobserver variability. It thus provides an ideal test bed to evaluate potential impacts of employing a tumor cell fraction computer-aided diagnostic (TCFCAD) tool to support pathologists' evaluation. During a National Slide Seminar event, pathologists (n = 69) were asked to visually estimate TCF in 10 regions of interest (ROIs) from hematoxylin and eosin colorectal cancer images intentionally curated for diverse tissue compositions, cellularity, and stain intensities. Next, they re-evaluated the same ROIs while being provided a TCFCAD-created overlay highlighting predicted tumor vs nontumor cells, together with the corresponding TCF percentage. Participants also reported confidence levels in their assessments using a 5-tier scale, indicating no confidence to high confidence, respectively. The TCF ground truth (GT) was defined by manual cell-counting by experts. When assisted, interobserver variability significantly decreased, showing estimates converging to the GT. This improvement remained even when TCFCAD predictions deviated slightly from the GT. The standard deviation (SD) of the estimated TCF to the GT across ROIs was 9.9% vs 5.8% with TCFCAD (P < .0001). The intraclass correlation coefficient increased from 0.8 to 0.93 (95% CI, 0.65-0.93 vs 0.86-0.98), and pathologists stated feeling more confident when aided (3.67 ± 0.81 vs 4.17 ± 0.82 with the computer-aided diagnostic [CAD] tool). TCFCAD estimation support demonstrated improved scoring accuracy, interpathologist agreement, and scoring confidence. Interestingly, pathologists also expressed more willingness to use such a CAD tool at the end of the survey, highlighting the importance of training/education to increase adoption of CAD systems.
Assuntos
Computadores , Patologistas , Humanos , SuíçaRESUMO
Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery.