Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 178(1): 147-156, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18194146

RESUMO

The focus of many fungal endophyte studies has been how plants benefit from endophyte infection. Few studies have investigated the role of the host plant as an environment in shaping endophyte community diversity and composition. The effects that different attributes of the host plant, that is, host genetic variation, host variation in resistance to the fungal pathogen Ustilago maydis and U. maydis infection, have on the fungal endophyte communities in maize (Zea mays) was examined. The internal transcribed spacer (ITS) region of the rDNA was sequenced to identify fungi and the endophyte communities were compared in six maize lines that varied in their resistance to U. maydis. It was found that host genetic variation, as determined by maize line, had significant effects on species richness, while the interactions between line and U. maydis infection and line and field plot had significant effects on endophyte community composition. However, the effects of maize line were not dependent on whether lines were resistant or susceptible to U. maydis. Almost 3000 clones obtained from 58 plants were sequenced to characterize the maize endophyte community. These results suggest that the endophyte community is shaped by complex interactions and factors, such as inoculum pool and microclimate, may be important.


Assuntos
Ecossistema , Simbiose/fisiologia , Ustilago/fisiologia , Zea mays/microbiologia , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Reação em Cadeia da Polimerase , Zea mays/genética , Zea mays/imunologia
2.
Theor Appl Genet ; 114(7): 1229-38, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17468806

RESUMO

Quantitative trait loci (QTL) contributing to the frequency and severity of Ustilago maydis infection in the leaf, ear, stalk, and tassel of maize plants were mapped using an A188 x CMV3 and W23 x CMV3 recombinant inbred (RI) populations. QTLs mapped to genetic bins 2.04 and 9.04-9.05 of the maize genome contributed strongly (R (2) = 18-28%) to variation in the frequency and severity of U. maydis infection over the entire plant in both populations and within the majority of environments. QTLs mapped to bins 3.05, 3.08, and 8.00 in the A188 x CMV3 population and bin 4.05 in both populations significantly contributed to the frequency or severity of infection in only the tassel tissue. QTLs mapped to bin 1.07 in the A188 x CMV3 population and bin 7.00 in the W23 x CMV3 population contributed to U. maydis resistance in only the ear tissue. Interestingly, the CMV3 allele of the QTL mapped to bin 1.10 in the A188 x CMV3 population significantly contributed to U. maydis susceptibility in the ear and stalk but significantly increased resistance in the tassel tissue. Digenic epistatic interactions between the QTL mapped to bin 5.08 and four distinct QTLs significantly contributed to the frequency and severity of infection over the entire plant and within the tassel tissue of the A188 x CMV3 population. Several QTLs detected in this study mapped to regions of the maize genome containing previously mapped U. maydis resistance QTLs and genes involved in plant disease resistance.


Assuntos
Doenças das Plantas/genética , Locos de Características Quantitativas , Ustilago/genética , Zea mays/genética , Zea mays/microbiologia , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Genes de Plantas , Genoma de Planta , Imunidade Inata , Modelos Genéticos
3.
J Mol Evol ; 54(4): 548-62, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11956693

RESUMO

Phylogenetic relationships among the NBS-LRR (nucleotide binding site-leucine-rich repeat) resistance gene homologues (RGHs) from 30 genera and nine families were evaluated relative to phylogenies for these taxa. More than 800 NBS-LRR RGHs were analyzed, primarily from Fabaceae, Brassicaceae, Poaceae, and Solanaceae species, but also from representatives of other angiosperm and gymnosperm families. Parsimony, maximum likelihood, and distance methods were used to classify these RGHs relative to previously observed gene subfamilies as well as within more closely related sequence clades. Grouping sequences using a distance cutoff of 250 PAM units (point accepted mutations per 100 residues) identified at least five ancient sequence clades with representatives from several plant families: the previously observed TIR gene subfamily and a minimum of four deep splits within the non-TIR gene subfamily. The deep splits in the non-TIR subfamily are also reflected in comparisons of amino acid substitution rates in various species and in ratios of nonsynonymous-to-synonymous nucleotide substitution rates ( K(A)/ K(S) values) in Arabidopsis thaliana. Lower K(A)/ K(S) values in the TIR than the non-TIR sequences suggest greater functional constraints in the TIR subfamily. At least three of the five identified ancient clades appear to predate the angiosperm-gymnosperm radiation. Monocot sequences are absent from the TIR subfamily, as observed in previous studies. In both subfamilies, clades with sequences separated by approximately 150 PAM units are family but not genus specific, providing a rough measure of minimum dates for the first diversification event within these clades. Within any one clade, particular taxa may be dramatically over- or underrepresented, suggesting preferential expansions or losses of certain RGH types within particular taxa and suggesting that no one species will provide models for all major sequence types in other taxa.


Assuntos
Família Multigênica , Filogenia , Plantas/genética , Sequência de Aminoácidos , Animais , Sequência Consenso , Evolução Molecular , Variação Genética , Dados de Sequência Molecular , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa