Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Sci Technol ; 57(41): 15608-15616, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796045

RESUMO

Procedures for environmental risk assessment for pesticides are under continuous development and subject to debate, especially at higher tier levels. Spatiotemporal dynamics of both pesticide exposure and effects at the landscape scale are largely ignored, which is a major flaw of the current risk assessment system. Furthermore, concrete guidance on risk assessment at landscape scales in the regulatory context is lacking. In this regard, we present an integrated modular simulation model system that includes spatiotemporally explicit simulation of pesticide application, fate, and effects on aquatic organisms. As a case study, the landscape model was applied to the Rummen, a river catchment in Belgium with a high density of pome fruit orchards. The application of a pyrethroid to pome fruit and the corresponding drift deposition on surface water and fate dynamics were simulated. Risk to aquatic organisms was quantified using a toxicokinetic/toxicodynamic model for individual survival at different levels of spatial aggregation, ranging from the catchment scale to individual stream segments. Although the derivation of landscape-scale risk assessment end points from model outputs is straightforward, a dialogue within the community, building on concrete examples as provided by this case study, is urgently needed in order to decide on the appropriate end points and on the definition of representative landscape scenarios for use in risk assessment.


Assuntos
Praguicidas , Piretrinas , Poluentes Químicos da Água , Bélgica , Frutas/química , Praguicidas/análise , Modelos Biológicos , Medição de Risco , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 53(10): 6025-6034, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31008596

RESUMO

In this study, a trait-based macroinvertebrate sensitivity modeling tool is presented that provides two main outcomes: (1) it constructs a macroinvertebrate sensitivity ranking and, subsequently, a predictive trait model for each one of a diverse set of predefined Modes of Action (MOAs) and (2) it reveals data gaps and restrictions, helping with the direction of future research. Besides revealing taxonomic patterns of species sensitivity, we find that there was not one genus, family, or class which was most sensitive to all MOAs and that common test taxa were often not the most sensitive at all. Traits like life cycle duration and feeding mode were identified as important in explaining species sensitivity. For 71% of the species, no or incomplete trait data were available, making the lack of trait data the main obstacle in model construction. Research focus should therefore be on completing trait databases and enhancing them with finer morphological traits, focusing on the toxicodynamics of the chemical (e.g., target site distribution). Further improved sensitivity models can help with the creation of ecological scenarios by predicting the sensitivity of untested species. Through this development, our approach can help reduce animal testing and contribute toward a new predictive ecotoxicology framework.


Assuntos
Poluentes Químicos da Água , Animais , Ecologia , Ecotoxicologia , Estágios do Ciclo de Vida
3.
Rev Environ Contam Toxicol ; 239: 1-77, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26684744

RESUMO

A broadly accepted framework for prospective environmental risk assessment (ERA) of sediment-bound organic chemicals is currently lacking. Such a framework requires clear protection goals, evidence-based concepts that link exposure to effects and a transparent tiered-effect assessment. In this paper, we provide a tiered prospective sediment ERA procedure for organic chemicals in sediment, with a focus on the applicable European regulations and the underlying data requirements. Using the ecosystem services concept, we derived specific protection goals for ecosystem service providing units: microorganisms, benthic algae, sediment-rooted macrophytes, benthic invertebrates and benthic vertebrates. Triggers for sediment toxicity testing are discussed.We recommend a tiered approach (Tier 0 through Tier 3). Tier-0 is a cost-effective screening based on chronic water-exposure toxicity data for pelagic species and equilibrium partitioning. Tier-1 is based on spiked sediment laboratory toxicity tests with standard benthic test species and standardised test methods. If comparable chronic toxicity data for both standard and additional benthic test species are available, the Species Sensitivity Distribution (SSD) approach is a more viable Tier-2 option than the geometric mean approach. This paper includes criteria for accepting results of sediment-spiked single species toxicity tests in prospective ERA, and for the application of the SSD approach. We propose micro/mesocosm experiments with spiked sediment, to study colonisation success by benthic organisms, as a Tier-3 option. Ecological effect models can be used to supplement the experimental tiers. A strategy for unifying information from various tiers by experimental work and exposure-and effect modelling is provided.


Assuntos
Sedimentos Geológicos/química , Compostos Orgânicos/toxicidade , Medição de Risco , Poluentes Químicos da Água/toxicidade , Animais , Ecossistema , Estudos Prospectivos
4.
Sci Total Environ ; 798: 149329, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375230

RESUMO

The objective of this case study was to explore the feasibility of using ecological models for applying an ecosystem services-based approach to environmental risk assessment using currently available data and methodologies. For this we used a 5 step approach: 1) selection of environmental scenario, 2) ecosystem service selection, 3) development of logic chains, 4) selection and application of ecological models and 5) detailed ecosystem service assessment. The study system is a European apple orchard managed according to integrated pest management principles. An organophosphate insecticide was used as the case study chemical. Four ecosystem services are included in this case study: soil quality regulation, pest control, pollination and recreation. Logic chains were developed for each ecosystem service and describe the link between toxicant effects on service providing units and ecosystem services delivery. For the soil quality regulation ecosystem service, springtails and earthworms were the service providing units, for the pest control ecosystem service it was ladybirds, for the pollination ecosystem service it was honeybees and for the recreation ecosystem service it was the meadow brown butterfly. All the ecological models addressed the spatio-temporal magnitude of the direct effects of the insecticide on the service providing units and ecological production functions were used to extrapolate these outcomes to the delivery of ecosystem services. For all ecosystem services a decision on the acceptability of the modelled and extrapolated effects on the service providing units could be made using the protection goals as set by the European Food Safety Authority (EFSA). Developing quantitative ecological production functions for extrapolation of ecosystem services delivery from population endpoints remains one of the major challenges. We feel that the use of ecological models can greatly add to this development, although the further development of existing ecological models, and of new models, is needed for this.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Abelhas , Monitoramento Ambiental , Modelos Teóricos , Polinização , Medição de Risco
5.
J Hazard Mater ; 397: 122655, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32388089

RESUMO

Knowledge of exposure to a wide range of chemicals, and the spatio-temporal variability thereof, is urgently needed in the context of protecting and restoring aquatic ecosystems. This paper discusses a computational material flow analysis to predict the occurrence of thousands of man-made organic chemicals on a European scale, based on a novel temporally and spatially resolved modelling framework. The goal was to increase understanding of pressures by emerging chemicals and to complement surface water monitoring data. The ambition was to provide a first step towards a "real-life" mixture exposure situation accounting for as many chemicals as possible. Comparison of simulated concentrations and chemical monitoring data for 226 substance/basin combinations showed that the simulated concentrations were accurate on average. For 65% and 90% of substance/basin combinations the error was within one and two orders of magnitude respectively. An analysis of the relative importance of uncertainties revealed that inaccuracies in use volume or use type information contributed most to the error for individual substances. To resolve this, we suggest better registration of use types of industrial chemicals, investigation of presence/absence of industrial chemicals in wastewater and runoff samples and more scientific information exchange.

6.
Environ Toxicol Chem ; 33(7): 1476-88, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24307654

RESUMO

Because aquatic macroinvertebrates may be exposed regularly to pesticides in edge-of-the-field water bodies, an accurate assessment of potential adverse effects and subsequent population recovery is essential. Standard effect risk assessment tools are not able to fully address the complexities arising from multiple exposure patterns, nor can they properly address the population recovery process. In the present study, we developed an individual-based model of the freshwater amphipod Gammarus pulex to evaluate the consequences of exposure to 4 compounds with different modes of action on individual survival and population recovery. Effects on survival were calculated using concentration-effect relationships and the threshold damage model (TDM), which accounts for detailed processes of toxicokinetics and toxicodynamics. Delayed effects as calculated by the TDM had a significant impact on individual survival and population recovery. We also evaluated the standard assessment of effects after short-term exposures using the 96-h concentration-effect model and the TDM, which was conservative for very short-term exposure. An integration of a TKTD submodel with a population model can be used to explore the ecological relevance of ecotoxicity endpoints in different exposure environments.


Assuntos
Anfípodes/efeitos dos fármacos , Exposição Ambiental , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/fisiologia , Animais , Água Doce/análise , Modelos Biológicos , Praguicidas/análise , Medição de Risco , Poluentes Químicos da Água/análise
7.
Integr Environ Assess Manag ; 9(3): e47-57, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23625553

RESUMO

This article presents a framework to diagnose and predict the effects of chemicals, integrating 2 promising tools to incorporate more ecology into ecological risk assessment, namely traits-based approaches and ecological modeling. Traits-based approaches are used increasingly to derive correlations between the occurrence of species traits and chemical exposure from biological and chemical monitoring data. This assessment can also be used in a diagnostic way, i.e., to identify the chemicals probably posing the highest risks to the aquatic ecosystems. The article also describes how ecological models can be used to explore how traits govern the species-substance interactions and to predict effects at the individual, population, and community and ecosystem level, i.e., from the receptor to the landscape level. This can be done by developing models describing the toxicokinetics and toxicodynamics of the chemical in the individual, the life-history of species and the connectivity of populations, determining their recovery, and the food web relations at the community and ecosystem level that determine the indirect effects. Special attention is given on how spatial aspects can be included in the ecological risk assessments using ecological models. The components of the framework are introduced and critically discussed. We describe how the different tools and data generated through experimentation (laboratory and semifield) and biomonitoring can be integrated. The article uses examples from the aquatic compartment, but the concepts that are used, and their integration within the framework, can be generalized to other environmental compartments.


Assuntos
Ecotoxicologia/métodos , Exposição Ambiental , Monitoramento Ambiental/métodos , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Animais , Ecossistema , Meio Ambiente , Cadeia Alimentar , Medição de Risco/métodos
8.
PLoS One ; 8(1): e54584, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23365675

RESUMO

Human practices in managed landscapes may often adversely affect aquatic biota, such as aquatic insects. Dispersal is often the limiting factor for successful re-colonization and recovery of stressed habitats. Therefore, in this study, we evaluated the effects of landscape permeability, assuming a combination of riparian vegetation (edge permeability) and other vegetation (landscape matrix permeability), and distance between waterbodies on the colonization and recovery potential of weakly flying insects. For this purpose, we developed two models, a movement and a population model of the non-biting midge, Chironomus riparius, an aquatic insect with weak flying abilities. With the movement model we predicted the outcome of dispersal in a landscape with several linear water bodies (ditches) under different assumptions regarding landscape-dependent movement. Output from the movement model constituted the probabilities of encountering another ditch and of staying in the natal ditch or perishing in the landscape matrix, and was used in the second model. With this individual-based model of midge populations, we assessed the implications for population persistence and for recovery potential after an extreme stress event. We showed that a combination of landscape attributes from the movement model determines the fate of dispersing individuals and, once extrapolated to the population level, has a big impact on the persistence and recovery of populations. Population persistence benefited from low edge permeability as it reduced the dispersal mortality which was the main factor determining population persistence and viability. However, population recovery benefited from higher edge permeability, but this was conditional on the low effective distance that ensured fewer losses in the landscape matrix. We discuss these findings with respect to possible landscape management scenarios.


Assuntos
Distribuição Animal/fisiologia , Organismos Aquáticos/fisiologia , Chironomidae/fisiologia , Dinâmica Populacional/estatística & dados numéricos , Animais , Ecossistema , Humanos , Modelos Biológicos , Movimento
9.
Environ Pollut ; 163: 109-16, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22325438

RESUMO

We assessed dietary exposure of the little owl Athene noctua to trace metal contamination in a Dutch Rhine River floodplain area. Diet composition was calculated per month for three habitat types, based on the population densities of six prey types (earthworms, ground beetles and four small mammal species) combined with the little owl's functional response to these prey types. Exposure levels showed a strong positive relationship with the dietary fraction of earthworms, but also depended on the dietary fraction of common voles, with higher common vole fractions resulting in decreasing exposure levels. Spatio-temporal changes in the availability of earthworms and common voles in particular resulted in considerable variation in exposure, with peaks in exposure exceeding a tentative toxicity threshold. These findings imply that wildlife exposure assessments based on a predefined, average diet composition may considerably underestimate local or intermittent peaks in exposure.


Assuntos
Dieta/estatística & dados numéricos , Exposição Ambiental/análise , Poluentes Ambientais/análise , Metais/análise , Estrigiformes , Animais , Besouros/metabolismo , Ecossistema , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/metabolismo , Cadeia Alimentar , Mamíferos/metabolismo , Metais/metabolismo , Países Baixos , Oligoquetos/metabolismo
10.
Sci Total Environ ; 415: 93-100, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21802704

RESUMO

Agricultural practices are essential for sustaining the human population, but at the same time they can directly disrupt ecosystem functioning. Ecological risk assessment (ERA) aims to estimate possible adverse effects of human activities on ecosystems and their parts. Current ERA practices, however, incorporate very little ecology and base the risk estimates on the results of standard tests with several standard species. The main obstacles for a more ecologically relevant ERA are the lack of clear protection goals and the inherent complexity of ecosystems that is hard to approach empirically. In this paper, we argue that the ecosystem services framework offers an opportunity to define clear and ecologically relevant protection goals. At the same time, ecological models provide the tools to address ecological complexity to the degree needed to link measurement endpoints and ecosystem services, and to quantify service provision and possible adverse effects from human activities. We focus on the ecosystem services relevant for agroecosystem functioning, including pollination, biocontrol and eutrophication effects and present modeling studies relevant for quantification of each of the services. The challenges of the ecosystem services approach are discussed as well as the limitations of ecological models in the context of ERA. A broad, multi-stakeholder dialog is necessary to aid the definition of protection goals in terms of services delivered by ecosystems and their parts. The need to capture spatio-temporal dynamics and possible interactions among service providers pose challenges for ecological models as a basis for decision making. However, we argue that both fields are advancing quickly and can prove very valuable in achieving more ecologically relevant ERA.


Assuntos
Ecossistema , Modelos Biológicos , Agricultura , Agentes de Controle Biológico , Conservação dos Recursos Naturais , Produtos Agrícolas/fisiologia , Monitoramento Ambiental , Polinização , Medição de Risco , Água/química
11.
Environ Pollut ; 163: 91-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22325436

RESUMO

In agroecosystems, organisms may regularly be exposed to anthropogenic stressors, e.g. pesticides. Species' sensitivity to stress depends on toxicity, life-history, and landscape structure. We developed an individual-based model of an isopod, Asellus aquaticus, to explore how timing of stress events affects population dynamics in a seasonal environment. Furthermore, we tested the relevance of habitat connectivity and spatial distribution of stress for the recovery of a local and total population. The simulation results indicated that population recovery is mainly driven by reproductive periods. Furthermore, high habitat connectivity led to faster recovery both for local and total populations. However, effects of landscape structure disappeared for homogeneously stressed populations, where local survivors increased recovery rate. Finally, local populations recovered faster, implying that assessing recovery in the field needs careful consideration of spatial scale for sampling. We emphasize the need for a coherent definition of recovery for more relevant ecosystem risk assessment and management.


Assuntos
Ecossistema , Isópodes/crescimento & desenvolvimento , Adaptação Fisiológica , Animais , Organismos Aquáticos , Inseticidas/toxicidade , Isópodes/efeitos dos fármacos , Isópodes/fisiologia , Modelos Biológicos , Crescimento Demográfico , Estresse Fisiológico , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa