Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Eng Online ; 15(1): 107, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27612951

RESUMO

BACKGROUND: The goal of this paper is to present a computational fluid dynamic (CFD) model with moving boundaries to study the intraventricular flows in a patient-specific framework. Starting from the segmentation of real-time transesophageal echocardiographic images, a CFD model including the complete left ventricle and the moving 3D mitral valve was realized. Their motion, known as a function of time from the segmented ultrasound images, was imposed as a boundary condition in an Arbitrary Lagrangian-Eulerian framework. RESULTS: The model allowed for a realistic description of the displacement of the structures of interest and for an effective analysis of the intraventricular flows throughout the cardiac cycle. The model provides detailed intraventricular flow features, and highlights the importance of the 3D valve apparatus for the vortex dynamics and apical flow. CONCLUSIONS: The proposed method could describe the haemodynamics of the left ventricle during the cardiac cycle. The methodology might therefore be of particular importance in patient treatment planning to assess the impact of mitral valve treatment on intraventricular flow dynamics.


Assuntos
Ventrículos do Coração/diagnóstico por imagem , Hemodinâmica , Hidrodinâmica , Imageamento Tridimensional , Modelagem Computacional Específica para o Paciente , Ultrassonografia , Função Ventricular , Humanos , Modelos Cardiovasculares
2.
J Biomech ; 50: 144-150, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27866678

RESUMO

BACKGROUND: As the intracardiac flow field is affected by changes in shape and motility of the heart, intraventricular flow features can provide diagnostic indications. Ventricular flow patterns differ depending on the cardiac condition and the exploration of different clinical cases can provide insights into how flow fields alter in different pathologies. METHODS: In this study, we applied a patient-specific computational fluid dynamics model of the left ventricle and mitral valve, with prescribed moving boundaries based on transesophageal ultrasound images for three cardiac pathologies, to verify the abnormal flow patterns in impaired hearts. One case (P1) had normal ejection fraction but low stroke volume and cardiac output, P2 showed low stroke volume and reduced ejection fraction, P3 had a dilated ventricle and reduced ejection fraction. RESULTS: The shape of the ventricle and mitral valve, together with the pathology influence the flow field in the left ventricle, leading to distinct flow features. Of particular interest is the pattern of the vortex formation and evolution, influenced by the valvular orifice and the ventricular shape. The base-to-apex pressure difference of maximum 2mmHg is consistent with reported data. CONCLUSION: We used a CFD model with prescribed boundary motion to describe the intraventricular flow field in three patients with impaired diastolic function. The calculated intraventricular flow dynamics are consistent with the diagnostic patient records and highlight the differences between the different cases. The integration of clinical images and computational techniques, therefore, allows for a deeper investigation intraventricular hemodynamics in patho-physiology.


Assuntos
Ventrículos do Coração/fisiopatologia , Simulação por Computador , Ecocardiografia Tridimensional , Ventrículos do Coração/diagnóstico por imagem , Hemodinâmica , Humanos , Valva Mitral/diagnóstico por imagem , Valva Mitral/fisiopatologia , Modelos Cardiovasculares
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa