Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Lett ; 19(4): 20220616, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37073527

RESUMO

Theoretical analyses indicate that aggressive signals should positively correlate with the signallers' willingness and abilities to fight. Few experimental studies, however, have tested this prediction. In two experiments employing distinct, ecologically realistic protocols, we quantified the association between aggressive signals and fighting in fruit fly genotypes and found high positive genetic correlations between threat and fighting (rG = 0.80 and 0.74). Our results add to the growing body of experimental work indicating that aggressive signals have relatively high informational value.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila melanogaster/genética , Agressão
2.
Mol Ecol ; 31(10): 2865-2881, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35313034

RESUMO

Male sexual aggression towards females is a form of sexual conflict that can result in increased fitness for males through forced copulations (FCs) or coercive matings at the cost of female lifetime fitness. We used male fruit flies (Drosophila melanogaster) as a model system to uncover the genomic contributions to variation in FC, both due to standing variation in a wild population, and due to plastic changes associated with variation in social experience. We used RNAseq to analyse whole-transcriptome differential expression (DE) in male head tissue associated with evolved changes in FC from lineages previously selected for high and low FC rate and in male flies with varying FC rates due to social experience. We identified hundreds of genes associated with evolved and plastic variation in FC, however only a small proportion (27 genes) showed consistent DE due to both modes of variation. We confirmed this trend of low concordance in gene expression effects across broader sets of genes significant in either the evolved or plastic analyses using multivariate approaches. The gene ontology terms neuropeptide hormone activity and serotonin receptor activity were significantly enriched in the set of significant genes. Of seven genes chosen for RNAi knockdown validation tests, knockdown of four genes showed the expected effect on FC behaviours. Taken together, our results provide important information about the apparently independent genetic architectures that underlie natural variation in sexual aggression due to evolution and plasticity.


Assuntos
Copulação , Drosophila melanogaster , Agressão , Animais , Drosophila melanogaster/genética , Feminino , Variação Genética/genética , Masculino , Plásticos , Reprodução , Comportamento Sexual Animal
3.
Int J Mol Sci ; 21(13)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610435

RESUMO

Social interactions are typically impaired in neuropsychiatric disorders such as autism, for which the genetic underpinnings are very complex. Social interactions can be modeled by analysis of behaviors, including social spacing, sociability, and aggression, in simpler organisms such as Drosophila melanogaster. Here, we examined the effects of mutants of the autism-related gene neuroligin 3 (nlg3) on fly social and non-social behaviors. Startled-induced negative geotaxis is affected by a loss of function nlg3 mutation. Social space and aggression are also altered in a sex- and social-experience-specific manner in nlg3 mutant flies. In light of the conserved roles that neuroligins play in social behavior, our results offer insight into the regulation of social behavior in other organisms, including humans.


Assuntos
Transtorno Autístico/genética , Moléculas de Adesão Celular Neuronais/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Agressão/fisiologia , Animais , Transtorno Autístico/metabolismo , Comportamento Animal/fisiologia , Moléculas de Adesão Celular Neuronais/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Masculino , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Comportamento Social , Interação Social
4.
Evolution ; 74(6): 1112-1123, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32372455

RESUMO

Forced copulation is an extreme form of sexual aggression that can affect the evolution of sex-specific anatomy, morphology, and behavior. To characterize mechanistic and evolutionary aspects of forced copulation, we artificially selected male fruit flies based on their ability to succeed in the naturally prevalent behavior of forced matings with newly eclosed (teneral) females. The low and high forced copulation lineages showed rapid divergence, with the high lineages ultimately showing twice the rates of forced copulation as the low lineages. While males from the high lineages spent more time aggressively pursuing and mounting teneral females, their behavior toward non-teneral and heterospecific females was similar to that of males from the low lineages. Males from the low and high lineages also showed similar levels of male-male aggression. This suggests little or no genetic correlations between sexual aggression and non-aggressive pursuit of females, and between male aggression toward females and males. Surprisingly however, males from the high lineages had twice as high mating success than males from the low lineages when allowed to compete for consensual mating with mature females. In further experiments, we found no evidence for trade-offs associated with high forced mating rates: males from the high lineages did not have lower longevity than males from the low lineages when housed with females, and four generations of relaxed selection did not lead to convergence in forced mating rates. Our data indicate complex interactions among forced copulation success and consensual mating behavior, which we hope to clarify in future genomic work.


Assuntos
Agressão , Copulação , Seleção Artificial , Animais , Tamanho Corporal/genética , Drosophila melanogaster , Feminino , Masculino , Seleção Genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa