Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 16(2): 1250-61, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26756610

RESUMO

Highly controlled Fe-catalyzed growth of monolayer hexagonal boron nitride (h-BN) films is demonstrated by the dissolution of nitrogen into the catalyst bulk via NH3 exposure prior to the actual growth step. This "pre-filling" of the catalyst bulk reservoir allows us to control and limit the uptake of B and N species during borazine exposure and thereby to control the incubation time and h-BN growth kinetics while also limiting the contribution of uncontrolled precipitation-driven h-BN growth during cooling. Using in situ X-ray diffraction and in situ X-ray photoelectron spectroscopy combined with systematic growth calibrations, we develop an understanding and framework for engineering the catalyst bulk reservoir to optimize the growth process, which is also relevant to other 2D materials and their heterostructures.


Assuntos
Compostos de Boro/química , Nanoestruturas/química , Compostos de Amônio/química , Compostos de Boro/síntese química , Catálise , Ferro/química , Cinética , Nanoestruturas/ultraestrutura , Nitrogênio/química , Propriedades de Superfície , Difração de Raios X
2.
Nano Lett ; 15(3): 1867-75, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25664483

RESUMO

The scalable chemical vapor deposition of monolayer hexagonal boron nitride (h-BN) single crystals, with lateral dimensions of ∼0.3 mm, and of continuous h-BN monolayer films with large domain sizes (>25 µm) is demonstrated via an admixture of Si to Fe catalyst films. A simple thin-film Fe/SiO2/Si catalyst system is used to show that controlled Si diffusion into the Fe catalyst allows exclusive nucleation of monolayer h-BN with very low nucleation densities upon exposure to undiluted borazine. Our systematic in situ and ex situ characterization of this catalyst system establishes a basis for further rational catalyst design for compound 2D materials.

3.
J Am Chem Soc ; 136(51): 17808-17, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25487041

RESUMO

By excluding metals from synthesis, growth of carbon nanostructures via unreduced oxide nanoparticle catalysts offers wide technological potential. We report new observations of the mechanisms underlying chemical vapor deposition (CVD) growth of fibrous carbon nanostructures from zirconia nanoparticles. Transmission electron microscope (TEM) observation reveals distinct differences in morphological features of carbon nanotubes and nanofibers (CNTs and CNFs) grown from zirconia nanoparticle catalysts versus typical oxide-supported metal nanoparticle catalysts. Nanofibers borne from zirconia lack an observable graphitic cage consistently found with nanotube-bearing metal nanoparticle catalysts. We observe two distinct growth modalities for zirconia: (1) turbostratic CNTs 2-3 times smaller in diameter than the nanoparticle localized at a nanoparticle corner, and (2) nonhollow CNFs with approximately the same diameter as the nanoparticle. Unlike metal nanoparticle catalysts, zirconia-based growth should proceed via surface-bound kinetics, and we propose a growth model where initiation occurs at nanoparticle corners. Utilizing these mechanistic insights, we further demonstrate that preannealing of zirconia nanoparticles with a solid-state amorphous carbon substrate enhances growth yield.

4.
J Am Chem Soc ; 136(39): 13698-708, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25188018

RESUMO

The dynamics of the graphene-catalyst interaction during chemical vapor deposition are investigated using in situ, time- and depth-resolved X-ray photoelectron spectroscopy, and complementary grand canonical Monte Carlo simulations coupled to a tight-binding model. We thereby reveal the interdependency of the distribution of carbon close to the catalyst surface and the strength of the graphene-catalyst interaction. The strong interaction of epitaxial graphene with Ni(111) causes a depletion of dissolved carbon close to the catalyst surface, which prevents additional layer formation leading to a self-limiting graphene growth behavior for low exposure pressures (10(-6)-10(-3) mbar). A further hydrocarbon pressure increase (to ∼10(-1) mbar) leads to weakening of the graphene-Ni(111) interaction accompanied by additional graphene layer formation, mediated by an increased concentration of near-surface dissolved carbon. We show that growth of more weakly adhered, rotated graphene on Ni(111) is linked to an initially higher level of near-surface carbon compared to the case of epitaxial graphene growth. The key implications of these results for graphene growth control and their relevance to carbon nanotube growth are highlighted in the context of existing literature.

5.
Phys Chem Chem Phys ; 16(47): 25989-6003, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25356600

RESUMO

Intercalation of oxygen at the interface of graphene grown by chemical vapour deposition and its polycrystalline copper catalyst can have a strong impact on the electronic, chemical and structural properties of both the graphene and the Cu. This can affect the oxidation resistance of the metal as well as subsequent graphene transfer. Here, we show, using near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), X-ray absorption near edge spectroscopy (XANES), energy dispersive X-ray spectroscopy (EDX) and (environmental) scanning electron microscopy (ESEM) that both the oxygen intercalation and de-intercalation are kinetically driven and can be clearly distinguished from carbon etching. The obtained results reveal that a charge transfer between as grown graphene and Cu can be annulled by intercalating oxygen creating quasi-free-standing graphene. This effect is found to be reversible on vacuum annealing proceeding via graphene grain boundaries and defects within the graphene but not without loss of graphene by oxidative etching for repeated (de-)intercalation cycles.

6.
Nano Lett ; 13(10): 4624-31, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24024736

RESUMO

Carbon diffusion barriers are introduced as a general and simple method to prevent premature carbon dissolution and thereby to significantly improve graphene formation from the catalytic transformation of solid carbon sources. A thin Al2O3 barrier inserted into an amorphous-C/Ni bilayer stack is demonstrated to enable growth of uniform monolayer graphene at 600 °C with domain sizes exceeding 50 µm, and an average Raman D/G ratio of <0.07. A detailed growth rationale is established via in situ measurements, relevant to solid-state growth of a wide range of layered materials, as well as layer-by-layer control in these systems.


Assuntos
Carbono/química , Grafite/química , Nanoestruturas/química , Óxido de Alumínio/química , Catálise , Cristalização , Difusão , Níquel/química , Análise Espectral Raman , Propriedades de Superfície
7.
Nano Lett ; 13(10): 4769-78, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24041311

RESUMO

Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration.


Assuntos
Cobre/química , Grafite/química , Nanoestruturas/química , Carbono/química , Cristalização , Oxigênio/química , Espectroscopia Fotoeletrônica , Propriedades de Superfície
8.
NPJ 2D Mater Appl ; 7(1): 2, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665487

RESUMO

The presence of metal atoms at the edges of graphene nanoribbons (GNRs) opens new possibilities toward tailoring their physical properties. We present here formation and high-resolution characterization of indium (In) chains on the edges of graphene-supported GNRs. The GNRs are formed when adsorbed hydrocarbon contamination crystallizes via laser heating into small ribbon-like patches of a second graphitic layer on a continuous graphene monolayer and onto which In is subsequently physical vapor deposited. Using aberration-corrected scanning transmission electron microscopy (STEM), we find that this leads to the preferential decoration of the edges of the overlying GNRs with multiple In atoms along their graphitic edges. Electron-beam irradiation during STEM induces migration of In atoms along the edges of the GNRs and triggers the formation of longer In atom chains during imaging. Density functional theory (DFT) calculations of GNRs similar to our experimentally observed structures indicate that both bare zigzag (ZZ) GNRs as well as In-terminated ZZ-GNRs have metallic character, whereas in contrast, In termination induces metallicity for otherwise semiconducting armchair (AC) GNRs. Our findings provide insights into the creation and properties of long linear metal atom chains at graphitic edges.

9.
Nano Lett ; 11(10): 4154-60, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21905732

RESUMO

Low-temperature (∼450 °C), scalable chemical vapor deposition of predominantly monolayer (74%) graphene films with an average D/G peak ratio of 0.24 and domain sizes in excess of 220 µm(2) is demonstrated via the design of alloy catalysts. The admixture of Au to polycrystalline Ni allows a controlled decrease in graphene nucleation density, highlighting the role of step edges. In situ, time-, and depth-resolved X-ray photoelectron spectroscopy and X-ray diffraction reveal the role of subsurface C species and allow a coherent model for graphene formation to be devised.

10.
ACS Nano ; 15(9): 14373-14383, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34410707

RESUMO

Single atoms and few-atom nanoclusters are of high interest in catalysis and plasmonics, but pathways for their fabrication and placement remain scarce. We report here the self-assembly of room-temperature-stable single indium (In) atoms and few-atom In clusters (2-6 atoms) that are anchored to substitutional silicon (Si) impurity atoms in suspended monolayer graphene membranes. Using atomically resolved scanning transmission electron microscopy (STEM), we find that the symmetry of the In structures is critically determined by the three- or fourfold coordination of the Si "anchors". All structures are produced without electron-beam induced materials modification. In turn, when activated by electron beam irradiation in the STEM, we observe in situ the formation, restructuring, and translation of the Si-anchored In structures. Our results on In-Si-graphene provide a materials system for controlled self-assembly and heteroatomic anchoring of single atoms and few-atom nanoclusters on graphene.

11.
ACS Omega ; 6(50): 34301-34313, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963916

RESUMO

Direct-write additive manufacturing of graphene and carbon nanotube (CNT) patterns by aerosol jet printing (AJP) is promising for the creation of thermal and electrical interconnects in (opto)electronics. In realistic application scenarios, this however often requires deposition of graphene and CNT patterns on rugged substrates such as, for example, roughly machined and surface-oxidized metal block heat sinks. Most AJP of graphene/CNT patterns has thus far however concentrated on flat wafer- or foil-type substrates. Here, we demonstrate AJP of graphene and single walled CNT (SWCNT) patterns on realistically rugged plasma-electrolytic-oxidized (PEO) Al blocks, which are promising heat sink materials. We show that AJP on the rugged substrates offers line resolution of down to ∼40 µm width for single AJP passes, however, at the cost of noncomplete substrate coverage including noncovered µm-sized pores in the PEO Al blocks. With multiple AJP passes, full coverage including coverage of the pores is, however, readily achieved. Comparing archetypical aqueous and organic graphene and SWCNT inks, we show that the choice of the ink system drastically influences the nanocarbon AJP parameter window, deposit microstructure including crystalline quality, compactness of deposit, and inter/intrapass layer adhesion for multiple passes. Simple electrical characterization indicates aqueous graphene inks as the most promising choice for AJP-deposited electrical interconnect applications. Our parameter space screening thereby forms a framework for rational process development for graphene and SWCNT AJP on application-relevant, rugged substrates.

12.
Sci Rep ; 10(1): 4839, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179773

RESUMO

Scanning probe microscopy (SPM) techniques are amongst the most important and versatile experimental methods in surface- and nanoscience. Although their measurement principles on rigid surfaces are well understood and steady progress on the instrumentation has been made, SPM imaging on suspended, flexible membranes remains difficult to interpret. Due to the interaction between the SPM tip and the flexible membrane, morphological changes caused by the tip can lead to deformations of the membrane during scanning and hence significantly influence measurement results. On the other hand, gaining control over such modifications can allow to explore unknown physical properties and functionalities of such membranes. Here, we demonstrate new types of measurements that become possible with two SPM instruments (atomic force microscopy, AFM, and scanning tunneling microscopy, STM) that are situated on opposite sides of a suspended two-dimensional (2D) material membrane and thus allow to bring both SPM tips arbitrarily close to each other. One of the probes is held stationary on one point of the membrane, within the scan area of the other probe, while the other probe is scanned. This way new imaging modes can be obtained by recording a signal on the stationary probe as a function of the position of the other tip. The first example, which we term electrical cross-talk imaging (ECT), shows the possibility of performing electrical measurements across the membrane, potentially in combination with control over the forces applied to the membrane. Using ECT, we measure the deformation of the 2D membrane around the indentation from the AFM tip. In the second example, which we term mechanical cross-talk imaging (MCT), we disentangle the mechanical influence of a scanning probe tip (e.g. AFM) on a freestanding membrane by means of independently recording the response of the opposing tip. In this way we are able to separate the tip-induced membrane deformation topography from the (material-dependent) force between the tip and the membrane. Overall, the results indicate that probing simultaneously both surfaces of ultra-thin membranes, such as suspended 2D materials, could provide novel insights into the electronic properties of the materials.

13.
ACS Appl Mater Interfaces ; 12(36): 40937-40948, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805835

RESUMO

Graphene electrodes and deep eutectic solvents (DESs) are two emerging material systems that have individually shown highly promising properties in electrochemical applications. To date, however, it has not been tested whether the combination of graphene and DESs can yield synergistic effects in electrochemistry. We therefore study the electrochemical behavior of a defined graphene monolayer of centimeter-scale, which was produced by chemical vapor deposition and transferred onto insulating SiO2/Si supports, in the common DES choline chloride/ethylene glycol (12CE) under typical electrochemical conditions. We measure the graphene potential window in 12CE and estimate the apparent electron transfer kinetics of an outer-sphere redox couple. We further explore the applicability of the 12CE electrolyte to fabricate nanostructured metal (Zn) and metalloid (Ge) hybrids with graphene by electrodeposition. By comparing our graphene electrodes with common bulk glassy carbon electrodes, a key finding we make is that the two-dimensional nature of the graphene electrodes has a clear impact on DES-based electrochemistry. Thereby, we provide a first framework toward rational optimization of graphene-DES systems for electrochemical applications.

14.
J Am Chem Soc ; 131(34): 12144-54, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19663436

RESUMO

We report that nanoparticulate zirconia (ZrO(2)) catalyzes both growth of single-wall and multiwall carbon nanotubes (CNTs) by thermal chemical vapor deposition (CVD) and graphitization of solid amorphous carbon. We observe that silica-, silicon nitride-, and alumina-supported zirconia on silicon nucleates single- and multiwall carbon nanotubes upon exposure to hydrocarbons at moderate temperatures (750 degrees C). High-pressure, time-resolved X-ray photoelectron spectroscopy (XPS) of these substrates during carbon nanotube nucleation and growth shows that the zirconia catalyst neither reduces to a metal nor forms a carbide. Point-localized energy-dispersive X-ray spectroscopy (EDAX) using scanning transmission electron microscopy (STEM) confirms catalyst nanoparticles attached to CNTs are zirconia. We also observe that carbon aerogels prepared through pyrolysis of a Zr(IV)-containing resorcinol-formaldehyde polymer aerogel precursor at 800 degrees C contain fullerenic cage structures absent in undoped carbon aerogels. Zirconia nanoparticles embedded in these carbon aerogels are further observed to act as nucleation sites for multiwall carbon nanotube growth upon exposure to hydrocarbons at CVD growth temperatures. Our study unambiguously demonstrates that a nonmetallic catalyst can catalyze CNT growth by thermal CVD while remaining in an oxidized state and provides new insight into the interactions between nanoparticulate metal oxides and carbon at elevated temperatures.

15.
ACS Omega ; 3(8): 9246-9255, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30197998

RESUMO

Using reduced graphene oxide (r-GO) as a multifunctional conductive binder, a simple, cost-effective, and environmentally friendly approach is developed to fabricate activated carbon/reduced graphene oxide (AC/r-GO) composite electrodes for supercapacitors with outstanding performance. In such a composite, r-GO provides several much needed critical functions: r-GO not only serves as the binder material improving the AC particle/particle cohesion and electrode-film/substrate adhesion but also improves the electrical conductivity of the composite and provides additional surfaces for ion adsorption. Furthermore, during electrode fabrication, initial GO precursor functions as an effective dispersant for AC, resulting in a stable electrode material slurry. Employing characterization by advanced microscopy techniques, we show that AC and r-GO assemble into an interconnected network structure, resulting in a composite with high specific capacitance, excellent rate capability, and long cycling life stability. Such high-performance electrodes coupled with their relatively simple, scalable, and low-cost fabrication process thereby provide a clear pathway toward large-scale implementation of supercapacitors.

16.
ACS Nano ; 12(8): 8758-8769, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30075065

RESUMO

We employ atomically resolved and element-specific scanning transmission electron microscopy (STEM) to visualize in situ and at the atomic scale the crystallization and restructuring processes of two-dimensional (2D) molybdenum disulfide (MoS2) films. To this end, we deposit a model heterostructure of thin amorphous MoS2 films onto freestanding graphene membranes used as high-resolution STEM supports. Notably, during STEM imaging the energy input from the scanning electron beam leads to beam-induced crystallization and restructuring of the amorphous MoS2 into crystalline MoS2 domains, thereby emulating widely used elevated temperature MoS2 synthesis and processing conditions. We thereby directly observe nucleation, growth, crystallization, and restructuring events in the evolving MoS2 films in situ and at the atomic scale. Our observations suggest that during MoS2 processing, various MoS2 polymorphs co-evolve in parallel and that these can dynamically transform into each other. We further highlight transitions from in-plane to out-of-plane crystallization of MoS2 layers, give indication of Mo and S diffusion species, and suggest that, in our system and depending on conditions, MoS2 crystallization can be influenced by a weak MoS2/graphene support epitaxy. Our atomic-scale in situ approach thereby visualizes multiple fundamental processes that underlie the varied MoS2 morphologies observed in previous ex situ growth and processing work. Our work introduces a general approach to in situ visualize at the atomic scale the growth and restructuring mechanisms of 2D transition-metal dichalcogenides and other 2D materials.

18.
Sci Rep ; 7(1): 2439, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28550280

RESUMO

Coordination polymerization leads to various metal-organic frameworks (MOFs) with unique physical properties and chemical functionalities. One of the challenges towards their applications as porous materials is to make MOFs optimally conductive to be used as electronic components. Here, it is demonstrated that Co-MOF-74, a honeycomb nano-framework with one-dimensionally arranged cobalt atoms, advances its physical properties by accommodating tetracyanochinodimethan (TCNQ), an acceptor molecule. Strong intermolecular charge transfer reduces the optical band gap down to 1.5 eV of divalent TCNQ and enhances the electrical conduction, which allows the MOF to be utilized for resistive gas- and photo-sensing. The results provide insight into the electronic interactions in doped MOFs and pave the way for their electronic applications.

19.
ACS Nano ; 11(5): 4521-4527, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28410557

RESUMO

We demonstrate the growth of overlapping grain boundaries in continuous, polycrystalline hexagonal boron nitride (h-BN) monolayer films via scalable catalytic chemical vapor deposition. Unlike the commonly reported atomically stitched grain boundaries, these overlapping grain boundaries do not consist of defect lines within the monolayer films but are composed of self-sealing bilayer regions of limited width. We characterize this overlapping h-BN grain boundary structure in detail by complementary (scanning) transmission electron microscopy techniques and propose a catalytic growth mechanism linked to the subsurface/bulk of the process catalyst and its boron and nitrogen solubilities. Our data suggest that the overlapping grain boundaries are comparatively resilient against deleterious pinhole formation associated with grain boundary defect lines and thus may reduce detrimental breakdown effects when polycrystalline h-BN monolayer films are used as ultrathin dielectrics, barrier layers, or separation membranes.

20.
Nanoscale ; 9(4): 1591-1598, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28070582

RESUMO

Molybdenum disulfide (MoS2) is a particularly interesting member of the family of two-dimensional (2D) materials due to its semiconducting and tunable electronic properties. Currently, the most reliable method for obtaining high-quality industrial scale amounts of 2D materials is chemical vapor deposition (CVD), which results in polycrystalline samples. As grain boundaries (GBs) are intrinsic defect lines within CVD-grown 2D materials, their atomic structure is of paramount importance. Here, through atomic-scale analysis of micrometer-long GBs, we show that covalently bound boundaries in 2D MoS2 tend to be decorated by nanopores. Such boundaries occur when differently oriented MoS2 grains merge during growth, whereas the overlap of grains leads to boundaries with bilayer areas. Our results suggest that the nanopore formation is related to stress release in areas with a high concentration of dislocation cores at the grain boundaries, and that the interlayer interaction leads to intrinsic rippling at the overlap regions. This provides insights for the controlled fabrication of large-scale MoS2 samples with desired structural properties for applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa